論文の概要: EDA-DM: Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models
- arxiv url: http://arxiv.org/abs/2401.04585v2
- Date: Thu, 26 Sep 2024 02:53:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 05:28:28.159939
- Title: EDA-DM: Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models
- Title(参考訳): EDA-DM:拡散モデルのポストトレーニング量子化のための分散アライメント強化
- Authors: Xuewen Liu, Zhikai Li, Junrui Xiao, Qingyi Gu,
- Abstract要約: 量子化はモデルの複雑性を効果的に低減し、後学習量子化(PTQ)は拡散モデルの圧縮と加速に非常に有望である。
既存の拡散モデルのPTQ法は, キャリブレーションサンプルレベルと再構成出力レベルの両方の分布ミスマッチ問題に悩まされている。
本稿では,拡散モデル(EDA-DM)の学習後量子化のための分散アライメントの強化について述べる。
- 参考スコア(独自算出の注目度): 4.21216544443537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved great success in image generation tasks through iterative noise estimation. However, the heavy denoising process and complex neural networks hinder their low-latency applications in real-world scenarios. Quantization can effectively reduce model complexity, and post-training quantization (PTQ), which does not require fine-tuning, is highly promising for compressing and accelerating diffusion models. Unfortunately, we find that due to the highly dynamic distribution of activations in different denoising steps, existing PTQ methods for diffusion models suffer from distribution mismatch issues at both calibration sample level and reconstruction output level, which makes the performance far from satisfactory, especially in low-bit cases. In this paper, we propose Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models (EDA-DM) to address the above issues. Specifically, at the calibration sample level, we select calibration samples based on the density and variety in the latent space, thus facilitating the alignment of their distribution with the overall samples; and at the reconstruction output level, we modify the loss of block reconstruction with the losses of layers, aligning the outputs of quantized model and full-precision model at different network granularity. Extensive experiments demonstrate that EDA-DM significantly outperforms the existing PTQ methods across various models (DDIM, LDM-4, LDM-8, Stable-Diffusion) and different datasets (CIFAR-10, LSUN-Bedroom, LSUN-Church, ImageNet, MS-COCO).
- Abstract(参考訳): 拡散モデルは反復雑音推定により画像生成タスクにおいて大きな成功を収めた。
しかし、重いノイズ発生プロセスと複雑なニューラルネットワークは、現実のシナリオにおける低レイテンシアプリケーションを妨げる。
量子化はモデルの複雑性を効果的に低減し、微調整を必要としない後学習量子化(PTQ)は拡散モデルの圧縮と加速に非常に有望である。
不運なことに, 従来の拡散モデルのPTQ法は, キャリブレーションサンプルレベルとリコンストラクション出力レベルの両方の分布ミスマッチ問題に悩まされており, 特に低ビットの場合において, 性能が満足できないことが判明した。
本稿では,拡散モデル(EDA-DM)の学習後量子化のための分散アライメントの強化について述べる。
具体的には、キャリブレーションサンプルレベルでは、潜伏空間の密度と多様性に基づいてキャリブレーションサンプルを選択し、その分布と全体サンプルとのアライメントを容易にし、再構成出力レベルでは、ブロック再構成の損失を層損失と調整し、量子化モデルと完全精度モデルの出力を異なるネットワーク粒度で調整する。
EDA-DMは様々なモデル(DDIM, LDM-4, LDM-8, LDM-Diffusion)と異なるデータセット(CIFAR-10, LSUN-Bedroom, LSUN-Church, ImageNet, MS-COCO)で、既存のPTQ法よりも大幅に優れていた。
関連論文リスト
- Timestep-Aware Correction for Quantized Diffusion Models [28.265582848911574]
本稿では,量子化誤差を動的に補正する量子化拡散モデルの時間ステップ対応補正法を提案する。
提案手法を低精度拡散モデルに応用することにより,出力品質の大幅な向上が期待できる。
論文 参考訳(メタデータ) (2024-07-04T13:22:31Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。