RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation
- URL: http://arxiv.org/abs/2401.04679v7
- Date: Mon, 3 Jun 2024 06:59:31 GMT
- Title: RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation
- Authors: Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, Dan Alistarh,
- Abstract summary: We present a new PEFT method called Robust Adaptation (RoSA) inspired by robust principal component analysis.
RoSA trains $textitlow-rank$ and $textithighly-sparse$ components on top of a set of fixed pretrained weights.
We show that RoSA outperforms LoRA, pure sparse fine-tuning, and alternative hybrid methods at the same parameter budget.
- Score: 30.797422827190278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate parameter-efficient fine-tuning (PEFT) methods that can provide good accuracy under limited computational and memory budgets in the context of large language models (LLMs). We present a new PEFT method called Robust Adaptation (RoSA) inspired by robust principal component analysis that jointly trains $\textit{low-rank}$ and $\textit{highly-sparse}$ components on top of a set of fixed pretrained weights to efficiently approximate the performance of a full-fine-tuning (FFT) solution. Across a series of challenging generative tasks such as grade-school math and SQL query generation, which require fine-tuning for good performance, we show that RoSA outperforms LoRA, pure sparse fine-tuning, and alternative hybrid methods at the same parameter budget, and can even recover the performance of FFT on some tasks. We provide system support for RoSA to complement the training algorithm, specifically in the form of sparse GPU kernels which enable memory- and computationally-efficient training, and show that it is also compatible with low-precision base weights, resulting in the first joint representation combining quantization, low-rank and sparse approximations. Our code is available at https://github.com/IST-DASLab/RoSA.
Related papers
- DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) relies on a bypass framework that ignores the differential parameter budget requirements across weight matrices.
DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget.
Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning.
arXiv Detail & Related papers (2024-05-27T17:02:27Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Matching Pursuit Based Scheduling for Over-the-Air Federated Learning [67.59503935237676]
This paper develops a class of low-complexity device scheduling algorithms for over-the-air learning via the method of federated learning.
Compared to the state-of-the-art proposed scheme, the proposed scheme poses a drastically lower efficiency system.
The efficiency of the proposed scheme is confirmed via experiments on the CIFAR dataset.
arXiv Detail & Related papers (2022-06-14T08:14:14Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - [Reproducibility Report] Rigging the Lottery: Making All Tickets Winners [1.6884611234933766]
$textitRigL$, a sparse training algorithm, claims to directly train sparse networks that match or exceed the performance of existing dense-to-sparse training techniques.
We implement $textitRigL$ from scratch in Pytorch and reproduce its performance on CIFAR-10 within 0.1% of the reported value.
arXiv Detail & Related papers (2021-03-29T17:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.