Low-resource finetuning of foundation models beats state-of-the-art in
histopathology
- URL: http://arxiv.org/abs/2401.04720v1
- Date: Tue, 9 Jan 2024 18:46:59 GMT
- Title: Low-resource finetuning of foundation models beats state-of-the-art in
histopathology
- Authors: Benedikt Roth, Valentin Koch, Sophia J. Wagner, Julia A. Schnabel,
Carsten Marr, Tingying Peng
- Abstract summary: We benchmark the most popular vision foundation models as feature extractors for histopathology data.
By finetuning a foundation model on a single GPU for only two hours or three days depending on the dataset, we can match or outperform state-of-the-art feature extractors.
This is a considerable shift from the current state, where only few institutions with large amounts of resources and datasets are able to train a feature extractor.
- Score: 3.4577420145036375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To handle the large scale of whole slide images in computational pathology,
most approaches first tessellate the images into smaller patches, extract
features from these patches, and finally aggregate the feature vectors with
weakly-supervised learning. The performance of this workflow strongly depends
on the quality of the extracted features. Recently, foundation models in
computer vision showed that leveraging huge amounts of data through supervised
or self-supervised learning improves feature quality and generalizability for a
variety of tasks. In this study, we benchmark the most popular vision
foundation models as feature extractors for histopathology data. We evaluate
the models in two settings: slide-level classification and patch-level
classification. We show that foundation models are a strong baseline. Our
experiments demonstrate that by finetuning a foundation model on a single GPU
for only two hours or three days depending on the dataset, we can match or
outperform state-of-the-art feature extractors for computational pathology.
These findings imply that even with little resources one can finetune a feature
extractor tailored towards a specific downstream task and dataset. This is a
considerable shift from the current state, where only few institutions with
large amounts of resources and datasets are able to train a feature extractor.
We publish all code used for training and evaluation as well as the finetuned
models.
Related papers
- The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
We evaluate seven feature extractor models across three different datasets with 162 different aggregation model configurations.
We find that the performance of many current feature extractor models is notably similar.
arXiv Detail & Related papers (2023-11-29T16:54:25Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Generative Forests [23.554594285885273]
We focus on generative AI for a type of data that still represent one of the most prevalent form of data: tabular data.
Our paper introduces a new powerful class of forest-based models fit for such tasks and a simple training algorithm with strong convergence guarantees.
Additional experiments on these tasks reveal that our models can be notably good contenders to diverse state of the art methods.
arXiv Detail & Related papers (2023-08-07T14:58:53Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources.
Most of the technical contributions aim at accelerating and stabilizing the training at scale.
In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature.
arXiv Detail & Related papers (2023-04-14T15:12:19Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - One Model is All You Need: Multi-Task Learning Enables Simultaneous
Histology Image Segmentation and Classification [3.8725005247905386]
We present a multi-task learning approach for segmentation and classification of tissue regions.
We enable simultaneous prediction with a single network.
As a result of feature sharing, we also show that the learned representation can be used to improve downstream tasks.
arXiv Detail & Related papers (2022-02-28T20:22:39Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.