Benchmarking Foundation Models for Mitotic Figure Classification
- URL: http://arxiv.org/abs/2508.04441v1
- Date: Wed, 06 Aug 2025 13:30:40 GMT
- Title: Benchmarking Foundation Models for Mitotic Figure Classification
- Authors: Jonas Ammeling, Jonathan Ganz, Emely Rosbach, Ludwig Lausser, Christof A. Bertram, Katharina Breininger, Marc Aubreville,
- Abstract summary: Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks.<n>In this work, we investigate the use of foundation models for mitotic figure classification.<n>We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers.
- Score: 0.37334049820361814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
Related papers
- Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations.<n>In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides.<n>Our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework.
arXiv Detail & Related papers (2025-06-23T14:12:16Z) - MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification [13.350688594462214]
We propose a novel approach explicitly modeling such metadata into a generative Diffusion model framework (MeDi)<n>MeDi allows for a targeted augmentation of underrepresented subpopulations with synthetic data.<n>We experimentally show that MeDi generates high-quality histopathology images for unseen subpopulations in TCGA.
arXiv Detail & Related papers (2025-06-20T16:41:25Z) - AI-Assisted Colonoscopy: Polyp Detection and Segmentation using Foundation Models [0.10037949839020764]
In colonoscopy, 80% of the missed polyps could be detected with the help of Deep Learning models.<n>In the search for algorithms capable of addressing this challenge, foundation models emerge as promising candidates.<n>Their zero-shot or few-shot learning capabilities, facilitate generalization to new data or tasks without extensive fine-tuning.<n>A comprehensive evaluation of foundation models for polyp segmentation was conducted, assessing both detection and delimitation.
arXiv Detail & Related papers (2025-03-31T14:20:53Z) - Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.<n>A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.<n>This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.