論文の概要: Exploring Attack Resilience in Distributed Platoon Controllers with
Model Predictive Control
- arxiv url: http://arxiv.org/abs/2401.04736v1
- Date: Mon, 8 Jan 2024 20:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 16:16:56.321608
- Title: Exploring Attack Resilience in Distributed Platoon Controllers with
Model Predictive Control
- Title(参考訳): モデル予測制御を用いた分散小隊制御における攻撃弾力性の検討
- Authors: Tashfique Hasnine Choudhury
- Abstract要約: 本論文は、攻撃シナリオの調査とシステム性能への影響評価により、分散車両小隊制御装置のセキュリティ向上を図ることを目的としている。
Man-in-the-middle (MITM) や false Data Injection (FDI) などの攻撃技術は、モデル予測制御 (MPC) コントローラを用いてシミュレーションされる。
攻撃分析や、検出に機械学習技術を使用した強化通信プロトコルを含む対策が提供されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extensive use of distributed vehicle platoon controllers has resulted in
several benefits for transportation systems, such as increased traffic flow,
fuel efficiency, and decreased pollution. The rising reliance on interconnected
systems and communication networks, on the other hand, exposes these
controllers to potential cyber-attacks, which may compromise their safety and
functionality. This thesis aims to improve the security of distributed vehicle
platoon controllers by investigating attack scenarios and assessing their
influence on system performance. Various attack techniques, including
man-in-the-middle (MITM) and false data injection (FDI), are simulated using
Model Predictive Control (MPC) controller to identify vulnerabilities and
weaknesses of the platoon controller. Countermeasures are offered and tested,
that includes attack analysis and reinforced communication protocols using
Machine Learning techniques for detection. The findings emphasize the
significance of integrating security issues into their design and
implementation, which helps to construct safe and resilient distributed platoon
controllers.
- Abstract(参考訳): 分散車両小隊制御装置の広範な使用は、交通量の増加、燃料効率の低下、汚染の低減など輸送システムにいくつかの利点をもたらした。
一方、相互接続されたシステムや通信ネットワークへの依存の高まりは、これらのコントローラを潜在的なサイバー攻撃に晒し、その安全性と機能を損なう可能性がある。
本論文は、攻撃シナリオの調査とシステム性能への影響評価により、分散車両小隊制御装置のセキュリティ向上を目的とする。
Man-in-the-middle (MITM) や false Data Injection (FDI) など様々な攻撃手法をモデル予測制御 (MPC) コントローラを用いてシミュレーションし、小隊制御装置の脆弱性と弱点を特定する。
攻撃分析や、検出に機械学習技術を使用した強化通信プロトコルを含む対策が提供されている。
この発見は、セキュリティ問題を設計と実装に統合することの重要性を強調し、安全でレジリエントな分散小隊制御装置の構築を支援する。
関連論文リスト
- A neural-network based anomaly detection system and a safety protocol to protect vehicular network [0.0]
この論文は、車車間通信を可能にすることにより、道路の安全性と効率を向上させるために、CITS(Cooperative Intelligent Transport Systems)の使用に対処する。
安全性を確保するため、論文では、Long Short-Term Memory (LSTM)ネットワークを用いた機械学習に基づくミスビヘイビア検出システム(MDS)を提案する。
論文 参考訳(メタデータ) (2024-11-11T14:15:59Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
IDSの第1の枠組みは, ジョイント中毒や回避攻撃に対して堅牢である。
IEEE-13バスフィードモデルにおける本手法のロバスト性を検証する。
論文 参考訳(メタデータ) (2024-05-05T16:24:30Z) - Optimal Controller Realizations against False Data Injections in Cooperative Driving [2.2134894590368748]
本研究では,False-Data Injection(FDI)攻撃の効果を緩和するためのコントローラ指向アプローチについて検討する。
我々は,新しいが等価なコントローラのクラスがベースコントローラを表現可能であることを示す。
FDI攻撃の影響を最小限に抑えるセンサの最適組み合わせを得る。
論文 参考訳(メタデータ) (2024-04-08T09:53:42Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Resilient Output Containment Control of Heterogeneous Multiagent Systems
Against Composite Attacks: A Digital Twin Approach [24.587040108605937]
本稿では,複合攻撃に対する異種マルチエージェントシステムの分散レジリエント出力保持制御について検討する。
デジタルツインにインスパイアされた、より高いセキュリティとプライバシを持つツイン層は、問題を2つのタスクに分離するために使用される。
論文 参考訳(メタデータ) (2023-03-22T16:41:05Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Deep Reinforcement Learning Aided Platoon Control Relying on V2X
Information [78.18186960475974]
車両間通信(V2X)が小隊制御性能に及ぼす影響について検討した。
我々の目的は、最も適切な状態空間を構築するために、車両間で共有されるべき特定の情報の集合を見つけることである。
状態空間に含めると、より高い状態次元を持つ負の効果を相殺する確率が高いため、より有益な情報が伝達においてより高い優先度で与えられる。
論文 参考訳(メタデータ) (2022-03-28T02:11:54Z) - An RL-Based Adaptive Detection Strategy to Secure Cyber-Physical Systems [0.0]
ソフトウェアベースの制御への依存が高まり、サイバー物理システムの脆弱性が高まった。
攻撃シナリオから学んだ経験に基づいて,このような検出器のパラメータを適応的に設定する強化学習(RL)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-04T07:38:50Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。