論文の概要: Efficient and Robust Parameter Optimization of the Unitary Coupled-Cluster Ansatz
- arxiv url: http://arxiv.org/abs/2401.04910v2
- Date: Tue, 25 Jun 2024 01:46:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:40:18.179925
- Title: Efficient and Robust Parameter Optimization of the Unitary Coupled-Cluster Ansatz
- Title(参考訳): ユニタリ結合クラスタアンサッツの効率的なロバストパラメータ最適化
- Authors: Weitang Li, Yufei Ge, Shixin Zhang, Yuqin Chen, Shengyu Zhang,
- Abstract要約: 本稿では、量子コンピュータ上でのユニタリ結合クラスタ・アンサッツのパラメータ最適化のために、近似パラボラ(SOAP)を用いた逐次最適化を提案する。
分子システムに関する数値的なベンチマークでは、SOAPはより高速な収束とノイズに対する堅牢性を達成することが示されている。
SOAPは、2量子ビットモデルシステムを用いた超伝導量子コンピュータの実験によりさらに検証される。
- 参考スコア(独自算出の注目度): 4.607081302947026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The variational quantum eigensolver (VQE) framework has been instrumental in advancing near-term quantum algorithms. However, parameter optimization remains a significant bottleneck for VQE, requiring a large number of measurements for successful algorithm execution. In this paper, we propose sequential optimization with approximate parabola (SOAP) as an efficient and robust optimizer specifically designed for parameter optimization of the unitary coupled-cluster ansatz on quantum computers. SOAP leverages sequential optimization and approximates the energy landscape as quadratic functions, minimizing the number of energy evaluations required to optimize each parameter. To capture parameter correlations, SOAP incorporates the average direction from the previous iteration into the optimization direction set. Numerical benchmark studies on molecular systems demonstrate that SOAP achieves significantly faster convergence and greater robustness to noise compared to traditional optimization methods. Furthermore, numerical simulations up to 20 qubits reveal that SOAP scales well with the number of parameters in the ansatz. The exceptional performance of SOAP is further validated through experiments on a superconducting quantum computer using a 2-qubit model system.
- Abstract(参考訳): 変分量子固有解法(VQE)フレームワークは、短期量子アルゴリズムの進歩に有効である。
しかしながら、パラメータ最適化はVQEにとって重要なボトルネックであり、アルゴリズムの実行を成功させるためには多数の測定が必要である。
本稿では、量子コンピュータ上でのユニタリ結合クラスタ・アンサッツのパラメータ最適化に特化して設計された、効率的で堅牢な最適化器として、近似パラボラ(SOAP)を用いた逐次最適化を提案する。
SOAPは逐次最適化を活用し、エネルギーランドスケープを二次関数として近似し、各パラメータの最適化に必要なエネルギー評価の数を最小化する。
パラメータ相関を捉えるために、SOAPは前回のイテレーションから平均方向を最適化方向セットに組み込む。
分子システムに関する数値的なベンチマークでは、SOAPは従来の最適化手法に比べてはるかに高速な収束とノイズに対する堅牢性を実現している。
さらに、20キュービットまでの数値シミュレーションにより、SOAPがアンザッツ内のパラメータの数とうまくスケールしていることが分かる。
SOAPの異常な性能は、2量子ビットモデルシステムを用いた超伝導量子コンピュータの実験によってさらに検証される。
関連論文リスト
- Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
変分量子アルゴリズム(VQA)は、学術・工業研究への応用に短期的な量子ハードウェアを使用するための有望な道を提供する。
SLSQP, COBYLA, CMA-ES, SPSAの4つの最適化手法の性能について検討した。
論文 参考訳(メタデータ) (2021-11-26T12:13:20Z) - Stochastic Gradient Line Bayesian Optimization: Reducing Measurement
Shots in Optimizing Parameterized Quantum Circuits [4.94950858749529]
我々は、少ない測定ショットで回路最適化を行うための効率的なフレームワークを開発する。
我々は、正確な期待値推定に頼ることなく、最適化を実現するための適応的な計測ショット戦略を定式化する。
本稿では,VQAsの最適化において,接尾辞平均化手法が統計的およびハードウェアノイズの影響を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-11-15T18:00:14Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Accelerating Quantum Approximate Optimization Algorithm using Machine
Learning [6.735657356113614]
本稿では,量子近似最適化アルゴリズム(QAOA)の実装を高速化する機械学習手法を提案する。
QAOAは、いわゆる量子超越性を証明する量子古典ハイブリッドアルゴリズムである。
提案手法は,264種類のグラフを用いて行った解析から,最適化の繰り返し回数を最大65.7%削減できることを示す。
論文 参考訳(メタデータ) (2020-02-04T02:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。