EmMixformer: Mix transformer for eye movement recognition
- URL: http://arxiv.org/abs/2401.04956v2
- Date: Thu, 9 May 2024 05:33:03 GMT
- Title: EmMixformer: Mix transformer for eye movement recognition
- Authors: Huafeng Qin, Hongyu Zhu, Xin Jin, Qun Song, Mounim A. El-Yacoubi, Xinbo Gao,
- Abstract summary: We propose a mixed transformer termed EmMixformer to extract time and frequency domain information for eye movement recognition.
We are the first to attempt leveraging transformer to learn long temporal dependencies within eye movement.
As the three modules provide complementary feature representations in terms of local and global dependencies, the proposed EmMixformer is capable of improving recognition accuracy.
- Score: 43.75206776070943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eye movement (EM) is a new highly secure biometric behavioral modality that has received increasing attention in recent years. Although deep neural networks, such as convolutional neural network (CNN), have recently achieved promising performance, current solutions fail to capture local and global temporal dependencies within eye movement data. To overcome this problem, we propose in this paper a mixed transformer termed EmMixformer to extract time and frequency domain information for eye movement recognition. To this end, we propose a mixed block consisting of three modules, transformer, attention Long short-term memory (attention LSTM), and Fourier transformer. We are the first to attempt leveraging transformer to learn long temporal dependencies within eye movement. Second, we incorporate the attention mechanism into LSTM to propose attention LSTM with the aim to learn short temporal dependencies. Third, we perform self attention in the frequency domain to learn global features. As the three modules provide complementary feature representations in terms of local and global dependencies, the proposed EmMixformer is capable of improving recognition accuracy. The experimental results on our eye movement dataset and two public eye movement datasets show that the proposed EmMixformer outperforms the state of the art by achieving the lowest verification error.
Related papers
- Frequency Guidance Matters: Skeletal Action Recognition by Frequency-Aware Mixed Transformer [18.459822172890473]
We introduce a frequency-aware attention module to unweave skeleton frequency representations.
We also develop a mixed transformer architecture to incorporate spatial features with frequency features.
Experiments show that FreqMiXFormer outperforms SOTA on 3 popular skeleton recognition datasets.
arXiv Detail & Related papers (2024-07-17T05:47:27Z) - Convolution and Attention Mixer for Synthetic Aperture Radar Image
Change Detection [41.38587746899477]
Synthetic aperture radar (SAR) image change detection is a critical task and has received increasing attentions in the remote sensing community.
Existing SAR change detection methods are mainly based on convolutional neural networks (CNNs)
We propose a convolution and attention mixer (CAMixer) to incorporate global attention.
arXiv Detail & Related papers (2023-09-21T12:28:23Z) - Laplacian-Former: Overcoming the Limitations of Vision Transformers in
Local Texture Detection [3.784298636620067]
Vision Transformer (ViT) models have demonstrated a breakthrough in a wide range of computer vision tasks.
These models struggle to capture high-frequency components of images, which can limit their ability to detect local textures and edge information.
We propose a new technique, Laplacian-Former, that enhances the self-attention map by adaptively re-calibrating the frequency information in a Laplacian pyramid.
arXiv Detail & Related papers (2023-08-31T19:56:14Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Cross-Modal Learning with 3D Deformable Attention for Action Recognition [4.128256616073278]
We propose a new 3D deformable transformer for action recognition with adaptive attention fields and a cross-temporal learning scheme.
The proposed 3D deformable transformer was tested on the.
60,.120 FineGYM, and PennActionAction datasets, and showed results better than or similar to pre-trained state-of-the-art methods.
arXiv Detail & Related papers (2022-12-12T00:31:08Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.