論文の概要: Decoupling Decision-Making in Fraud Prevention through Classifier
Calibration for Business Logic Action
- arxiv url: http://arxiv.org/abs/2401.05240v2
- Date: Wed, 21 Feb 2024 20:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 18:00:53.074033
- Title: Decoupling Decision-Making in Fraud Prevention through Classifier
Calibration for Business Logic Action
- Title(参考訳): ビジネス論理行動の分類校正によるフレーダ防止における意思決定のデカップリング
- Authors: Emanuele Luzio and Moacir Antonelli Ponti and Christian Ramirez
Arevalo and Luis Argerich
- Abstract要約: 我々は、機械学習(ML)分類器をビジネスロジックフレームワーク内のスコアベースのアクションから切り離す戦略としてキャリブレーション戦略を使用する。
この知見は,このアプローチのトレードオフとパフォーマンスへの影響を浮き彫りにしている。
特に、IsotonicとBetaのキャリブレーションメソッドは、トレーニングデータとテストデータのシフトがあるシナリオで際立っている。
- 参考スコア(独自算出の注目度): 1.8289218434318257
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models typically focus on specific targets like creating
classifiers, often based on known population feature distributions in a
business context. However, models calculating individual features adapt over
time to improve precision, introducing the concept of decoupling: shifting from
point evaluation to data distribution. We use calibration strategies as
strategy for decoupling machine learning (ML) classifiers from score-based
actions within business logic frameworks. To evaluate these strategies, we
perform a comparative analysis using a real-world business scenario and
multiple ML models. Our findings highlight the trade-offs and performance
implications of the approach, offering valuable insights for practitioners
seeking to optimize their decoupling efforts. In particular, the Isotonic and
Beta calibration methods stand out for scenarios in which there is shift
between training and testing data.
- Abstract(参考訳): マシンラーニングモデルは一般的に、ビジネスコンテキストにおける既知の人口特徴分布に基づいて、分類器の作成のような特定のターゲットにフォーカスする。
しかし、個々の特徴を計算するモデルは時間とともに適応して精度を向上し、デカップリングの概念を導入している。
我々は、機械学習(ML)分類器をビジネスロジックフレームワーク内のスコアベースのアクションから切り離す戦略としてキャリブレーション戦略を使用する。
これらの戦略を評価するために、実世界のビジネスシナリオと複数のMLモデルを用いて比較分析を行う。
本研究は,デカップリングの取り組みを最適化しようとする実践者に対して,アプローチのトレードオフとパフォーマンス上の意味を強調した。
特に、トレーニングとテストデータにシフトがあるシナリオでは、isotonicとbetaのキャリブレーション方法が際立っている。
関連論文リスト
- Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
我々は、全人口の複数のセグメントにまたがってデータ分布が変化するシナリオに焦点を当てる。
そこで本研究では,各セグメントのモデル性能を改善するために,二段階多重ロバスト推定法を提案する。
本手法は,市販の機械学習モデルを用いて実装されるように設計されている。
論文 参考訳(メタデータ) (2024-02-21T22:01:10Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Automatic Generation of Attention Rules For Containment of Machine
Learning Model Errors [1.4987559345379062]
我々は、観測を分離するために最適な規則を決定するためのいくつかのアルゴリズム(ストラテジー')を提案する。
特に,機能ベースのスライシングを利用する戦略は,人間の解釈可能で,モデル非依存であり,補足的な入力や知識を最小限に抑える必要がある。
戦略を評価するために、我々は、その性能、安定性、そして、目に見えないデータに対する一般化可能性など、様々な望ましい品質を測定するための指標を導入する。
論文 参考訳(メタデータ) (2023-05-14T10:15:35Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
本稿では,ソース・クラウド・シナリオに基づいて学習したモデルの一般化を特徴付ける新しいスコアリング手法を提案する。
インタラクションコンポーネントはシナリオドメインの難易度を特徴付けることを目的としており、シナリオドメインの多様性はダイバーシティスコアで取得される。
提案手法の有効性をシミュレーションおよび実世界(ソース,ターゲット)の一般化タスクで検証した。
論文 参考訳(メタデータ) (2022-11-02T01:39:30Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - Linear Classifiers that Encourage Constructive Adaptation [6.324366770332667]
本研究では,2段階ゲームとしての予測と適応のダイナミクスを考察し,モデルデザイナとその決定対象に対する最適な戦略を特徴付ける。
シミュレーションおよび実世界のデータセットのベンチマークでは、我々の手法を用いて訓練された分類器が既存の手法の精度を維持しつつ、より高いレベルの改善と少ない操作を誘導していることがわかった。
論文 参考訳(メタデータ) (2020-10-31T20:35:32Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。