論文の概要: AUTOACT: Automatic Agent Learning from Scratch via Self-Planning
- arxiv url: http://arxiv.org/abs/2401.05268v1
- Date: Wed, 10 Jan 2024 16:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 14:07:54.676302
- Title: AUTOACT: Automatic Agent Learning from Scratch via Self-Planning
- Title(参考訳): AUTOACT: セルフプランニングによるスクラッチからの自動エージェント学習
- Authors: Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou,
Yuchen Eleanor Jiang, Chengfei Lv, Huajun Chen
- Abstract要約: AutoActは、大規模アノテートデータやクローズドソースモデルからの合成軌跡に依存しない自動エージェント学習フレームワークである。
我々は異なるLLMを用いて総合的な実験を行い、AutoActは様々な強力なベースラインと比較して優れた性能または並列性能が得られることを示した。
- 参考スコア(独自算出の注目度): 56.81725335882185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language agents have achieved considerable performance on various complex
tasks. Despite the incessant exploration in this field, existing language agent
systems still struggle with costly, non-reproducible data reliance and face the
challenge of compelling a single model for multiple functions. To this end, we
introduce AutoAct, an automatic agent learning framework that does not rely on
large-scale annotated data and synthetic trajectories from closed-source models
(e.g., GPT-4). Given limited data with a tool library, AutoAct first
automatically synthesizes planning trajectories without any assistance from
humans or strong closed-source models. Then, AutoAct leverages a
division-of-labor strategy to automatically differentiate based on the target
task information and synthesized trajectories, producing a sub-agent group to
complete the task. We conduct comprehensive experiments with different LLMs,
which demonstrates that AutoAct yields better or parallel performance compared
to various strong baselines. We even notice that AutoAct, when using the
Llama-2-13b model, can achieve performance comparable to that of the
GPT-3.5-Turbo agent. Code will be available at
https://github.com/zjunlp/AutoAct.
- Abstract(参考訳): 言語エージェントは、様々な複雑なタスクでかなりのパフォーマンスを達成した。
この分野での絶え間ない探究にもかかわらず、既存の言語エージェントシステムはいまだにコストのかかる、再現不能なデータ依存に苦しんでおり、複数の機能に対して単一のモデルを引き付けるという課題に直面している。
そこで本研究では,大規模アノテートデータや,クローズドソースモデル(GPT-4など)からの合成トラジェクトリに依存しない自動エージェント学習フレームワークであるAutoActを紹介する。
ツールライブラリによる限られたデータから、AutoActはまず、人間や強力なクローズドソースモデルの助けなしに、計画トラジェクトリを自動で合成する。
次に、AutoActは、作業の分割戦略を利用して、目標とするタスク情報と軌跡を自動で識別し、タスクを完了するサブエージェントグループを生成する。
我々は異なるLLMを用いて総合的な実験を行い、AutoActは様々な強力なベースラインと比較して優れた性能または並列性能を示す。
さらに, Llama-2-13b モデルを用いて AutoAct が GPT-3.5-Turbo エージェントに匹敵する性能が得られることに気付きました。
コードはhttps://github.com/zjunlp/autoactで入手できる。
関連論文リスト
- SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning [14.702694298483445]
Tree-Search Enhanced LLM Agents (SELA)は、Monte Carlo Tree Search (MCTS)を利用してAutoMLプロセスを最適化するエージェントベースのシステムである。
SELAはパイプライン構成をツリーとして表現し、エージェントが知的かつ反復的に戦略を洗練させることを可能にする。
20の機械学習データセットにわたる広範囲な評価において、従来のAutoML手法とエージェントベースのAutoML手法のパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-10-22T17:56:08Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoMLは、エンドツーエンドのAI/MLパイプラインの構築を自動化することを約束する。
関心の高まりと高い期待にもかかわらず、AutoMLが現在採用されている範囲に関する情報が不足している。
論文 参考訳(メタデータ) (2023-07-20T11:14:24Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
本稿では,Regressed Learning (RL)タスクにおけるサブゴールの学習と活用のためのISAを提案する。
ISAは、タスクのサブゴールによってエッジがラベル付けされたオートマトンであるサブゴールオートマトンを誘導することで強化学習をインターリーブする。
サブゴールオートマトンはまた、タスクの完了を示す状態と、タスクが成功せずに完了したことを示す状態の2つの特別な状態で構成されている。
論文 参考訳(メタデータ) (2020-09-08T16:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。