GeoAI in Social Science
- URL: http://arxiv.org/abs/2401.05398v1
- Date: Tue, 19 Dec 2023 20:23:18 GMT
- Title: GeoAI in Social Science
- Authors: Wenwen Li
- Abstract summary: GeoAI, or geospatial artificial intelligence, is an exciting new area that leverages artificial intelligence (AI), geospatial big data, and massive computing power to solve problems with high automation and intelligence.
This paper reviews the progress of AI in social science research, highlighting important advancements in using GeoAI to fill critical data and knowledge gaps.
- Score: 0.9527350779226282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GeoAI, or geospatial artificial intelligence, is an exciting new area that
leverages artificial intelligence (AI), geospatial big data, and massive
computing power to solve problems with high automation and intelligence. This
paper reviews the progress of AI in social science research, highlighting
important advancements in using GeoAI to fill critical data and knowledge gaps.
It also discusses the importance of breaking down data silos, accelerating
convergence among GeoAI research methods, as well as moving GeoAI beyond
geospatial benefits.
Related papers
- GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - Artificial Intelligence and Human Geography [1.6135760596596367]
This paper examines the recent advances and applications of AI in human geography.
It includes the use of machine (deep) learning, including place representation and modeling, spatial analysis and predictive mapping, and urban planning and design.
arXiv Detail & Related papers (2023-12-14T11:20:22Z) - Artificial Intelligence Studies in Cartography: A Review and Synthesis
of Methods, Applications, and Ethics [4.665390376528911]
We conduct a systematic content analysis and narrative synthesis of research studies integrating GeoAI and cartography.
We identify dimensions of GeoAI methods for cartography such as data sources, data formats, map evaluations, and six contemporary GeoAI models.
We raise five potential ethical challenges that need to be addressed in the integration of GeoAI for cartography.
arXiv Detail & Related papers (2023-12-13T05:15:57Z) - Interpretable Geoscience Artificial Intelligence (XGeoS-AI): Application to Demystify Image Recognition [10.366695826805659]
This study proposes an interpretable geoscience artificial intelligence (XGeoS-AI) framework to unravel the mystery of image recognition in the Earth sciences.
Inspired by the mechanism of human vision, the proposed XGeoS-AI framework generates a threshold value from a local region within the whole image to complete the recognition.
arXiv Detail & Related papers (2023-11-08T01:54:56Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
This paper reviews the current development of AI security in the geoscience and remote sensing field.
It covers the following five important aspects: adversarial attack, backdoor attack, federated learning, uncertainty and explainability.
To the best of the authors' knowledge, this paper is the first attempt to provide a systematic review of AI security-related research in the geoscience and RS community.
arXiv Detail & Related papers (2022-12-19T10:54:51Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research [4.723592249469651]
In this article, we revisit and discuss the state of GeoAI open research directions.
The workshop series has fostered nexus for geoscientists, computer scientists, engineers, entrepreneurs, and decision-makers.
arXiv Detail & Related papers (2022-10-20T18:02:17Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.