Vector Field Oriented Diffusion Model for Crystal Material Generation
- URL: http://arxiv.org/abs/2401.05402v1
- Date: Wed, 20 Dec 2023 09:55:48 GMT
- Title: Vector Field Oriented Diffusion Model for Crystal Material Generation
- Authors: Astrid Klipfel, Ya\"el Fregier, Adlane Sayede, Zied Bouraoui
- Abstract summary: We propose a probabilistic diffusion model that utilizes a geometrically equivariant GNN to consider atomic positions and crystal lattices jointly.
We introduce a new generation metric inspired by Frechet Inception Distance, but based on GNN energy prediction rather than InceptionV3 used in computer vision.
- Score: 13.988999939285307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering crystal structures with specific chemical properties has become
an increasingly important focus in material science. However, current models
are limited in their ability to generate new crystal lattices, as they only
consider atomic positions or chemical composition. To address this issue, we
propose a probabilistic diffusion model that utilizes a geometrically
equivariant GNN to consider atomic positions and crystal lattices jointly. To
evaluate the effectiveness of our model, we introduce a new generation metric
inspired by Frechet Inception Distance, but based on GNN energy prediction
rather than InceptionV3 used in computer vision. In addition to commonly used
metrics like validity, which assesses the plausibility of a structure, this new
metric offers a more comprehensive evaluation of our model's capabilities. Our
experiments on existing benchmarks show the significance of our diffusion
model. We also show that our method can effectively learn meaningful
representations.
Related papers
- CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction [0.0]
In material science literature, it is well-known that crystalline materials exhibit topological structures.
In this paper, we propose an unsupervised framework namely, CrysAtom, using untagged crystal data to generate dense vector representation of atoms.
arXiv Detail & Related papers (2024-09-07T06:58:55Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - The Role of Reference Points in Machine-Learned Atomistic Simulation
Models [0.0]
Chemical Environment Modeling Theory (CEMT) is designed to overcome the limitations inherent in traditional atom-centered Machine Learning Force Field (MLFF) models.
It allows the leveraging of spatially-resolved energy densities and charge densities from FE-DFT calculations.
arXiv Detail & Related papers (2023-10-28T01:02:14Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
In the physical sciences, limited training data may not adequately characterize future observed data.
It is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate.
We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity.
arXiv Detail & Related papers (2022-12-14T23:57:46Z) - Normalizing flows for atomic solids [67.70049117614325]
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
We report Helmholtz free energy estimates for cubic and hexagonal ice modelled as monatomic water as well as for a truncated and shifted Lennard-Jones system.
Our results thus demonstrate that normalizing flows can provide high-quality samples and free energy estimates of solids, without the need for multi-staging or for imposing restrictions on the crystal geometry.
arXiv Detail & Related papers (2021-11-16T18:54:49Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
We propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework.
OGCNN includes atomic orbital interaction features that learn material properties in a robust way.
We examined the performance of this model on a broad range of crystalline material data to predict different properties.
arXiv Detail & Related papers (2020-08-14T15:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.