An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection
- URL: http://arxiv.org/abs/2401.05425v2
- Date: Thu, 24 Oct 2024 15:11:53 GMT
- Title: An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection
- Authors: Abdul Aziz, Nhat Pham, Neel Vora, Cody Reynolds, Jaime Lehnen, Pooja Venkatesh, Zhuoran Yao, Jay Harvey, Tam Vu, Kan Ding, Phuc Nguyen,
- Abstract summary: Up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated.
The scalp-based EEG test is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users.
We propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets.
- Score: 2.3925084916107098
- License:
- Abstract: Epilepsy is one of the most common neurological diseases globally (around 50 million people worldwide). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing-computing-communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer/mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies.
Related papers
- SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph
Diffusion Learning [21.689503325383253]
We propose the first data-driven study to detect epileptic waves in a real-world SEEG dataset.
In clinical practice, epileptic wave activities are considered to propagate between different regions in the brain.
The question of how to extract an exact epileptogenic network for each patient remains an open problem in the field of neuroscience.
arXiv Detail & Related papers (2023-06-15T08:29:10Z) - \'Epilexie: A digital therapeutic approach for treating intractable
epilepsy via Amenable Neurostimulation [0.0]
Amenable Neurostimulation (ANS) as part of a digital treatment strategy to intractable epilepsy is investigated.
ANS uses a closed-loop system to selectively stimulate neurons in the affected areas, therefore lowering the frequency of seizures.
The findings of this pilot research point to the possibility that ANS might be a realistic and successful therapy option for people afflicted with intractable epilepsy.
arXiv Detail & Related papers (2023-04-28T01:06:15Z) - Supervised and Unsupervised Deep Learning Approaches for EEG Seizure
Prediction [2.3096751699592137]
Epilepsy affects more than 50 million people worldwide, making it one of the world's most prevalent neurological diseases.
The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face.
We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure.
arXiv Detail & Related papers (2023-04-24T05:21:10Z) - Knowledge-Distilled Graph Neural Networks for Personalized Epileptic
Seizure Detection [43.905374104261014]
We propose a novel knowledge distillation approach to transfer the knowledge from a sophisticated seizure detector (called the teacher) trained on data from the full set of electrodes to learn new detectors (called the student)
They are both providing lightweight implementations and significantly reducing the number of electrodes needed for recording the EEG.
Our experiments show that both knowledge-distillation and personalization play significant roles in improving performance of seizure detection, particularly for patients with scarce EEG data.
arXiv Detail & Related papers (2023-04-03T15:37:40Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.