Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System
- URL: http://arxiv.org/abs/2401.05521v1
- Date: Wed, 10 Jan 2024 19:38:25 GMT
- Title: Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System
- Authors: Danjie Zhu, Simon X. Yang
- Abstract summary: The paper presents an innovative approach (CBNNTAP) that addresses the complexities and challenges introduced by ocean currents.
It incorporates a bio-inspired neural network-based (BINN) approach which predicts the most efficient paths for individual UUVs.
A critical innovation within the CBNNTAP algorithm is its capacity to address the disruptive effects of ocean currents.
- Score: 4.62588687215906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents an innovative approach (CBNNTAP) that addresses the
complexities and challenges introduced by ocean currents when optimizing target
assignment and motion planning for a multi-unmanned underwater vehicle (UUV)
system. The core of the proposed algorithm involves the integration of several
key components. Firstly, it incorporates a bio-inspired neural network-based
(BINN) approach which predicts the most efficient paths for individual UUVs
while simultaneously ensuring collision avoidance among the vehicles. Secondly,
an efficient target assignment component is integrated by considering the path
distances determined by the BINN algorithm. In addition, a critical innovation
within the CBNNTAP algorithm is its capacity to address the disruptive effects
of ocean currents, where an adjustment component is seamlessly integrated to
counteract the deviations caused by these currents, which enhances the accuracy
of both motion planning and target assignment for the UUVs. The effectiveness
of the CBNNTAP algorithm is demonstrated through comprehensive simulation
results and the outcomes underscore the superiority of the developed algorithm
in nullifying the effects of static and dynamic ocean currents in 2D and 3D
scenarios.
Related papers
- Applying Incremental Learning in Binary-Addition-Tree Algorithm for Dynamic Binary-State Network Reliability [0.08158530638728499]
The Binary-Addition-Tree algorithm (BAT) is a powerful implicit enumeration method for solving network reliability and optimization problems.
By introducing incremental learning, we enable the BAT to adapt and improve its performance iteratively as it encounters new data or network changes.
arXiv Detail & Related papers (2024-09-24T04:13:03Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC [13.71241401034042]
This paper proposes a distributed trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method.
Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance.
arXiv Detail & Related papers (2024-03-16T13:50:31Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization technique.
We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs.
The algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function.
arXiv Detail & Related papers (2022-05-31T16:00:32Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
The challenge of dynamic traffic demand in mobile networks is tackled by moving cells based on unmanned aerial vehicles.
Considering the tremendous potential of unmanned aerial vehicles in the future, we propose a new algorithm for coverage optimization.
The proposed algorithm is implemented based on a conditional generative adversarial neural network, with a unique multilayer sum-pooling loss function.
arXiv Detail & Related papers (2022-03-25T12:13:21Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T17:38:48Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
arXiv Detail & Related papers (2020-08-05T06:26:13Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.