Deep Reinforcement Learning for Field Development Optimization
- URL: http://arxiv.org/abs/2008.12627v1
- Date: Wed, 5 Aug 2020 06:26:13 GMT
- Title: Deep Reinforcement Learning for Field Development Optimization
- Authors: Yusuf Nasir
- Abstract summary: In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field development optimization (FDO) problem represents a challenging
mixed-integer nonlinear programming (MINLP) problem in which we seek to obtain
the number of wells, their type, location, and drilling sequence that maximizes
an economic metric. Evolutionary optimization algorithms have been effectively
applied to solve the FDO problem, however, these methods provide only a
deterministic (single) solution which are generally not robust towards small
changes in the problem setup. In this work, the goal is to apply convolutional
neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the
field development optimization problem in order to obtain a policy that maps
from different states or representation of the underlying geological model to
optimal decisions. The proximal policy optimization (PPO) algorithm is
considered with two CNN architectures of varying number of layers and
composition. Both networks obtained policies that provide satisfactory results
when compared to a hybrid particle swarm optimization - mesh adaptive direct
search (PSO-MADS) algorithm that has been shown to be effective at solving the
FDO problem.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - An Improved Artificial Fish Swarm Algorithm for Solving the Problem of
Investigation Path Planning [8.725702964289479]
We propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA)
We incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions.
Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes.
arXiv Detail & Related papers (2023-10-20T09:35:51Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
Large-scale multiobjective optimization problems (LSMOPs) are characterized as involving hundreds or even thousands of decision variables and multiple conflicting objectives.
Previous research has shown that these optimal solutions are uniformly distributed on the manifold structure in the low-dimensional space.
In this work, a generative adversarial network (GAN)-based manifold framework is proposed to learn the manifold and generate high-quality solutions.
arXiv Detail & Related papers (2021-01-08T09:38:38Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
Some problems have many objectives which lead to a large number of non-dominated solutions.
This paper presents a new algorithm that has been designed to obtain the most significant solutions.
This new algorithm has been applied to the real world application in Unmanned Air Vehicle (UAV) Mission Planning Problem.
arXiv Detail & Related papers (2020-02-20T17:07:08Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.