Theoretical and Empirical Advances in Forest Pruning
- URL: http://arxiv.org/abs/2401.05535v3
- Date: Sun, 22 Sep 2024 16:55:11 GMT
- Title: Theoretical and Empirical Advances in Forest Pruning
- Authors: Albert Dorador,
- Abstract summary: We revisit forest pruning, an approach that aims to have the best of both worlds: the accuracy of regression forests and the interpretability of regression trees.
We prove the advantage of a Lasso-pruned forest over its unpruned counterpart under extremely weak assumptions.
We find that in the vast majority of scenarios tested, there is at least one forest-pruning method that yields equal or better accuracy than the original full forest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Decades after their inception, regression forests continue to provide state-of-the-art accuracy, outperforming in this respect alternative machine learning models such as regression trees or even neural networks. However, being an ensemble method, the one aspect where regression forests tend to severely underperform regression trees is interpretability. In the present work, we revisit forest pruning, an approach that aims to have the best of both worlds: the accuracy of regression forests and the interpretability of regression trees. This pursuit, whose foundation lies at the core of random forest theory, has seen vast success in empirical studies. In this paper, we contribute theoretical results that support and qualify those empirical findings; namely, we prove the asymptotic advantage of a Lasso-pruned forest over its unpruned counterpart under extremely weak assumptions, as well as high-probability finite-sample generalization bounds for regression forests pruned according to the main methods, which we then validate by way of simulation. Then, we test the accuracy of pruned regression forests against their unpruned counterparts on 19 different datasets (16 synthetic, 3 real). We find that in the vast majority of scenarios tested, there is at least one forest-pruning method that yields equal or better accuracy than the original full forest (in expectation), while just using a small fraction of the trees. We show that, in some cases, the reduction in the size of the forest is so dramatic that the resulting sub-forest can be meaningfully merged into a single tree, obtaining a level of interpretability that is qualitatively superior to that of the original regression forest, which remains a black box.
Related papers
- Exogenous Randomness Empowering Random Forests [4.396860522241306]
We develop non-asymptotic expansions for the mean squared error (MSE) for both individual trees and forests.
Our findings unveil that feature subsampling reduces both the bias and variance of random forests compared to individual trees.
Our results reveal an intriguing phenomenon: the presence of noise features can act as a "blessing" in enhancing the performance of random forests.
arXiv Detail & Related papers (2024-11-12T05:06:10Z) - Ensembles of Probabilistic Regression Trees [46.53457774230618]
Tree-based ensemble methods have been successfully used for regression problems in many applications and research studies.
We study ensemble versions of probabilisticregression trees that provide smooth approximations of the objective function by assigningeach observation to each region with respect to a probability distribution.
arXiv Detail & Related papers (2024-06-20T06:51:51Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
We describe a simple and effective forest-based method set called em ForensicsForest Family to detect GAN-generate faces.
ForenscisForest is a newly proposed Multi-scale Hierarchical Cascade Forest.
Hybrid ForensicsForest integrates the CNN layers into models.
Divide-and-Conquer ForensicsForest can construct a forest model using only a portion of training samplings.
arXiv Detail & Related papers (2023-08-02T06:41:19Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work? [1.1050303097572156]
We show that both methods can be understood in terms of the same parameters and confounding assumptions under L2 loss.
In the randomized setting, both approaches performed akin to the new blended versions in a benchmark study.
arXiv Detail & Related papers (2022-06-21T12:45:07Z) - Trees, Forests, Chickens, and Eggs: When and Why to Prune Trees in a
Random Forest [8.513154770491898]
We argue that tree depth should be seen as a natural form of regularization across the entire procedure.
In particular, our work suggests that random forests with shallow trees are advantageous when the signal-to-noise ratio in the data is low.
arXiv Detail & Related papers (2021-03-30T21:57:55Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.