A provable initialization and robust clustering method for general mixture models
- URL: http://arxiv.org/abs/2401.05574v3
- Date: Wed, 23 Oct 2024 03:55:59 GMT
- Title: A provable initialization and robust clustering method for general mixture models
- Authors: Soham Jana, Jianqing Fan, Sanjeev Kulkarni,
- Abstract summary: Clustering is a fundamental tool in statistical machine learning in the presence of heterogeneous data.
Most recent results focus on optimal mislabeling guarantees when data are distributed around centroids with sub-Gaussian errors.
- Score: 6.806940901668607
- License:
- Abstract: Clustering is a fundamental tool in statistical machine learning in the presence of heterogeneous data. Most recent results focus primarily on optimal mislabeling guarantees when data are distributed around centroids with sub-Gaussian errors. Yet, the restrictive sub-Gaussian model is often invalid in practice since various real-world applications exhibit heavy tail distributions around the centroids or suffer from possible adversarial attacks that call for robust clustering with a robust data-driven initialization. In this paper, we present initialization and subsequent clustering methods that provably guarantee near-optimal mislabeling for general mixture models when the number of clusters and data dimensions are finite. We first introduce a hybrid clustering technique with a novel multivariate trimmed mean type centroid estimate to produce mislabeling guarantees under a weak initialization condition for general error distributions around the centroids. A matching lower bound is derived, up to factors depending on the number of clusters. In addition, our approach also produces similar mislabeling guarantees even in the presence of adversarial outliers. Our results reduce to the sub-Gaussian case in finite dimensions when errors follow sub-Gaussian distributions. To solve the problem thoroughly, we also present novel data-driven robust initialization techniques and show that, with probabilities approaching one, these initial centroid estimates are sufficiently good for the subsequent clustering algorithm to achieve the optimal mislabeling rates. Furthermore, we demonstrate that the Lloyd algorithm is suboptimal for more than two clusters even when errors are Gaussian and for two clusters when error distributions have heavy tails. Both simulated data and real data examples further support our robust initialization procedure and clustering algorithm.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Robust and Automatic Data Clustering: Dirichlet Process meets
Median-of-Means [18.3248037914529]
We present an efficient and automatic clustering technique by integrating the principles of model-based and centroid-based methodologies.
Statistical guarantees on the upper bound of clustering error suggest the advantages of our proposed method over existing state-of-the-art clustering algorithms.
arXiv Detail & Related papers (2023-11-26T19:01:15Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
The paper presents the algorithm for clustering a dataset by grouping the optimal, from the point of view of the BIC criterion.
An essential advantage of the algorithm is its ability to predict correct supercluster for new data based on already trained clusterer.
arXiv Detail & Related papers (2023-09-05T23:49:46Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous
Data [16.153709556346417]
Clustering is a widely deployed learning tool.
iLA-SDP is less sensitive than EM to and more stable on high-dimensional data.
arXiv Detail & Related papers (2022-09-29T21:03:13Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
Constrained clustering can leverage prior information on a growing amount of only partially labeled data.
We propose a novel framework for constrained clustering that is intuitive, interpretable, and can be trained efficiently in the framework of gradient variational inference.
arXiv Detail & Related papers (2021-06-11T13:38:09Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Robust M-Estimation Based Bayesian Cluster Enumeration for Real
Elliptically Symmetric Distributions [5.137336092866906]
Robustly determining optimal number of clusters in a data set is an essential factor in a wide range of applications.
This article generalizes so that it can be used with any arbitrary Really Symmetric (RES) distributed mixture model.
We derive a robust criterion for data sets with finite sample size, and also provide an approximation to reduce the computational cost at large sample sizes.
arXiv Detail & Related papers (2020-05-04T11:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.