Enhancing Blood Flow Assessment in Diffuse Correlation Spectroscopy: A
Transfer Learning Approach with Noise Robustness Analysis
- URL: http://arxiv.org/abs/2401.05580v3
- Date: Thu, 1 Feb 2024 16:36:43 GMT
- Title: Enhancing Blood Flow Assessment in Diffuse Correlation Spectroscopy: A
Transfer Learning Approach with Noise Robustness Analysis
- Authors: Xi Chen, Xingda Li
- Abstract summary: This study aims to assess the influence of Signal-to-Noise Ratios (SNRs) on the generalization ability of learned features.
A synthetic dataset with varying levels of added noise is utilized to simulate different SNRs.
The proposed model demonstrates excellent performance across different SNRs, exhibiting enhanced fitting accuracy.
- Score: 5.16677999056239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique
that measures the tissue blood flow, by using near-infrared coherent
point-source illumination to detect spectral changes. While machine learning
has demonstrated significant potential for measuring blood flow index (BFi), an
open question concerning the success of this approach pertains to its
robustness in scenarios involving deviations between datasets with varying
Signal-to-Noise Ratios (SNRs) originating from diverse clinical applications
and various setups. This study proposes a transfer learning approach, aims to
assess the influence of SNRs on the generalization ability of learned features,
and demonstrate the robustness for transfer learning. A synthetic dataset with
varying levels of added noise is utilized to simulate different SNRs. The
proposed network takes a 1x64 autocorrelation curve as input and generates BFi
and the correlation parameter beta. The proposed model demonstrates excellent
performance across different SNRs, exhibiting enhanced fitting accuracy,
particularly for low SNR datasets when compared with other fitting methods.
This highlights its potential for clinical diagnosis and treatment across
various scenarios under different clinical setups.
Related papers
- Distribution-informed and wavelength-flexible data-driven photoacoustic oximetry [0.6424287896973291]
Photoacoustic imaging (PAI) promises to measure spatially-resolved blood oxygen saturation.
Accurate blood oxygenation estimation could have important clinical applications, from cancer detection to quantifying inflammation.
This study addresses the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.
arXiv Detail & Related papers (2024-03-21T22:18:25Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
We introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain.
In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach.
The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.
arXiv Detail & Related papers (2023-12-15T08:34:31Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder [7.0876609220947655]
Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
arXiv Detail & Related papers (2022-04-07T08:50:48Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.