Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder
- URL: http://arxiv.org/abs/2204.03654v1
- Date: Thu, 7 Apr 2022 08:50:48 GMT
- Title: Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder
- Authors: Fangyu Zhang, Yanjie Wei, Jin Liu, Yanlin Wang, Wenhui Xi, Yi Pan
- Abstract summary: Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
- Score: 7.0876609220947655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of noninvasive brain imaging such as resting-state functional
magnetic resonance imaging (rs-fMRI) and its combination with AI algorithm
provides a promising solution for the early diagnosis of Autism spectrum
disorder (ASD). However, the performance of the current ASD classification
based on rs-fMRI still needs to be improved. This paper introduces a
classification framework to aid ASD diagnosis based on rs-fMRI. In the
framework, we proposed a novel filter feature selection method based on the
difference between step distribution curves (DSDC) to select remarkable
functional connectivities (FCs) and utilized a multilayer perceptron (MLP)
which was pretrained by a simplified Variational Autoencoder (VAE) for
classification. We also designed a pipeline consisting of a normalization
procedure and a modified hyperbolic tangent (tanh) activation function to
replace the original tanh function, further improving the model accuracy. Our
model was evaluated by 10 times 10-fold cross-validation and achieved an
average accuracy of 78.12%, outperforming the state-of-the-art methods reported
on the same dataset. Given the importance of sensitivity and specificity in
disease diagnosis, two constraints were designed in our model which can improve
the model's sensitivity and specificity by up to 9.32% and 10.21%,
respectively. The added constraints allow our model to handle different
application scenarios and can be used broadly.
Related papers
- Augmentation-based Unsupervised Cross-Domain Functional MRI Adaptation for Major Depressive Disorder Identification [23.639488571585044]
Major depressive disorder (MDD) is a common mental disorder that typically affects a person's mood, cognition, behavior, and physical health.
In this work, we propose a new augmentation-based unsupervised cross-domain fMRI adaptation framework for automatic diagnosis of MDD.
arXiv Detail & Related papers (2024-05-31T13:55:33Z) - Diagnosis Of Takotsubo Syndrome By Robust Feature Selection From The
Complex Latent Space Of DL-based Segmentation Network [4.583480375083946]
Using classification or segmentation models on medical to learn latent features opt out robust feature selection and may lead to overfitting.
We propose a novel feature selection technique using the latent space of a segmentation model that can aid diagnosis.
Our approach shows promising results in differential diagnosis of a rare cardiac disease with 82% diagnosis accuracy beating the previous state-of-the-art (SOTA) approach.
arXiv Detail & Related papers (2023-12-19T22:53:32Z) - EAG-RS: A Novel Explainability-guided ROI-Selection Framework for ASD
Diagnosis via Inter-regional Relation Learning [11.344446341236267]
We propose a novel explainability-guided region of interest selection (EAG-RS) framework that identifies non-linear high-order functional associations among brain regions.
The framework includes three steps: (i) inter-regional relation learning to estimate non-linear relations through random seed-based network masking, (ii) explainable connection-wise relevance score estimation to explore high-order relations between functional connections, and (iii) non-linear high-order FC-based diagnosis-informative ROI selection and learning to identify ASD.
arXiv Detail & Related papers (2023-10-05T09:14:54Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Diagnosis of Schizophrenia: A comprehensive evaluation [1.174402845822043]
We evaluated different classification algorithms based on support vector machine (SVM), random forest, kernel ridge regression and randomized neural networks.
Based on the evaluation, SVM based models with Gaussian kernel proved better compared to other classification models.
In terms of data modality the performance on integration of the grey matter and white matter proved better compared to the performance on the grey and white matter individually.
arXiv Detail & Related papers (2022-03-22T10:55:51Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.