Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation
- URL: http://arxiv.org/abs/2401.05629v2
- Date: Fri, 01 Nov 2024 21:46:03 GMT
- Title: Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation
- Authors: Lakshmideepakreddy Manda, Shaoru Chen, Mahyar Fazlyab,
- Abstract summary: Control Barrier Functions (CBFs) provide an elegant framework for constraining nonlinear control system dynamics.
We introduce a novel self-supervised learning framework to comprehensively address these challenges.
We validate our approach on a 2D double integrator (DI) system and a 7D fixed-wing aircraft system.
- Score: 5.62479170374811
- License:
- Abstract: Control Barrier Functions (CBFs) provide an elegant framework for constraining nonlinear control system dynamics to remain within an invariant subset of a designated safe set. However, identifying a CBF that balances performance-by maximizing the control invariant set-and accommodates complex safety constraints, especially in systems with high relative degree and actuation limits, poses a significant challenge. In this work, we introduce a novel self-supervised learning framework to comprehensively address these challenges. Our method begins with a Boolean composition of multiple state constraints that define the safe set. We first construct a smooth function whose zero superlevel set forms an inner approximation of this safe set. This function is then combined with a smooth neural network to parameterize the CBF candidate. To train the CBF and maximize the volume of the resulting control invariant set, we design a physics-informed loss function based on a Hamilton-Jacobi Partial Differential Equation (PDE). We validate the efficacy of our approach on a 2D double integrator (DI) system and a 7D fixed-wing aircraft system (F16).
Related papers
- Domain Adaptive Safety Filters via Deep Operator Learning [5.62479170374811]
We propose a self-supervised deep operator learning framework that learns the mapping from environmental parameters to the corresponding CBF.
We demonstrate the effectiveness of the method through numerical experiments on navigation tasks involving dynamic obstacles.
arXiv Detail & Related papers (2024-10-18T15:10:55Z) - Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints [50.920465513162334]
We introduce the PCBF algorithm to maximize the inner safe set of dynamical systems under input constraints.
We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system.
Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
arXiv Detail & Related papers (2024-10-05T18:45:19Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Differentiable Safety-Critical Control using Control Barrier
Functions for Generalization to Novel Environments [16.68313219331689]
Control barrier functions (CBFs) have become a popular tool to enforce safety of a control system.
We propose a differentiable optimization-based safety-critical control framework.
arXiv Detail & Related papers (2022-01-04T20:43:37Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.