論文の概要: Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language
Model Systems
- arxiv url: http://arxiv.org/abs/2401.05778v1
- Date: Thu, 11 Jan 2024 09:29:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 15:28:31.314705
- Title: Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language
Model Systems
- Title(参考訳): 大規模言語モデルシステムのリスク分類・緩和・評価ベンチマーク
- Authors: Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao, Sijia Li, Xinhao
Deng, Yunpeng Liu, Qinglin Zhang, Ziyi Qiu, Peiyang Li, Zhixing Tan, Junwu
Xiong, Xinyu Kong, Zujie Wen, Ke Xu, Qi Li
- Abstract要約: 大規模言語モデル(LLM)は、多様な自然言語処理タスクを解く上で強力な能力を持つ。
しかし、LLMシステムの安全性とセキュリティの問題は、その広範な応用にとって大きな障害となっている。
本稿では,LLMシステムの各モジュールに関連する潜在的なリスクを体系的に分析する包括的分類法を提案する。
- 参考スコア(独自算出の注目度): 29.828997665535336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have strong capabilities in solving diverse
natural language processing tasks. However, the safety and security issues of
LLM systems have become the major obstacle to their widespread application.
Many studies have extensively investigated risks in LLM systems and developed
the corresponding mitigation strategies. Leading-edge enterprises such as
OpenAI, Google, Meta, and Anthropic have also made lots of efforts on
responsible LLMs. Therefore, there is a growing need to organize the existing
studies and establish comprehensive taxonomies for the community. In this
paper, we delve into four essential modules of an LLM system, including an
input module for receiving prompts, a language model trained on extensive
corpora, a toolchain module for development and deployment, and an output
module for exporting LLM-generated content. Based on this, we propose a
comprehensive taxonomy, which systematically analyzes potential risks
associated with each module of an LLM system and discusses the corresponding
mitigation strategies. Furthermore, we review prevalent benchmarks, aiming to
facilitate the risk assessment of LLM systems. We hope that this paper can help
LLM participants embrace a systematic perspective to build their responsible
LLM systems.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多様な自然言語処理タスクを解く上で強力な能力を持つ。
しかし、LLMシステムの安全性とセキュリティの問題は、その広範な応用の大きな障害となっている。
多くの研究がllmシステムのリスクを調査し、対応する緩和戦略を開発した。
OpenAI、Google、Meta、Anthropicといった先進的な企業も、責任あるLLMに多くの努力を払っています。
そのため、既存の研究を整理し、地域社会の包括的分類体系を確立する必要性が高まっている。
本稿では,プロンプトを受けるための入力モジュール,広範なコーパスでトレーニングされた言語モデル,開発およびデプロイのためのツールチェーンモジュール,llm生成コンテンツのエクスポートのための出力モジュールを含む,llmシステムの4つの必須モジュールについて検討する。
そこで本研究では,llmシステムの各モジュールに関連する潜在的なリスクを体系的に解析し,対応する緩和戦略を考察する包括的分類法を提案する。
さらに, LLMシステムのリスクアセスメントを促進するために, 先行ベンチマークをレビューする。
本論文は, LLM の参加者が責任ある LLM システムを構築するための体系的な視点を受け入れるのに役立つことを願っている。
関連論文リスト
- Large Language Model Supply Chain: Open Problems From the Security Perspective [25.320736806895976]
大規模言語モデル(LLM)はソフトウェア開発パラダイムを変えつつあり、学術と産業の両方から大きな注目を集めています。
各コンポーネントの潜在的なセキュリティリスクとLCM SCのコンポーネント間の統合について議論する第一歩を踏み出します。
論文 参考訳(メタデータ) (2024-11-03T15:20:21Z) - Lifting the Veil on the Large Language Model Supply Chain: Composition, Risks, and Mitigations [6.478930807409979]
大規模言語モデル(LLM)は、インテリジェンスと生産性の両方に重大な影響を与えている。
本稿では, LLMサプライチェーンの概要を概説し, ステークホルダー, アーティファクトの構成, 供給タイプについて詳述する。
論文 参考訳(メタデータ) (2024-10-28T17:02:12Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Unbridled Icarus: A Survey of the Potential Perils of Image Inputs in Multimodal Large Language Model Security [5.077261736366414]
強力なMLLMのような信頼性の高いAIシステムの追求は、現代研究の重要な領域として現れている。
本稿では,画像モダリティのMLLMへの導入に伴う多面的リスクの軽減に努める。
論文 参考訳(メタデータ) (2024-04-08T07:54:18Z) - A New Era in LLM Security: Exploring Security Concerns in Real-World
LLM-based Systems [47.18371401090435]
我々は,LLMではなく,Large Language Model(LLM)システムのセキュリティを分析する。
我々は,多層・多段階のアプローチを提案し,これを最先端のOpenAI GPT4に適用する。
OpenAI GPT4は安全機能を改善するために多くの安全制約を設計しているが、これらの安全制約は攻撃者に対して脆弱である。
論文 参考訳(メタデータ) (2024-02-28T19:00:12Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。