論文の概要: LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected?
- arxiv url: http://arxiv.org/abs/2401.05952v2
- Date: Sat, 30 Mar 2024 09:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:25:45.419625
- Title: LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected?
- Title(参考訳): LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected?
- Authors: Qihui Zhang, Chujie Gao, Dongping Chen, Yue Huang, Yixin Huang, Zhenyang Sun, Shilin Zhang, Weiye Li, Zhengyan Fu, Yao Wan, Lichao Sun,
- Abstract要約: 現在の研究は主に、混合シナリオに適切に対処することなく、純粋なMGT検出に焦点を当てている。
AIと人為的コンテンツの両方を含む混合テキストの形式であるmixtextを定義します。
既存の検出器はミックステキストの識別に苦慮し,特に微妙な修正やスタイル適応性に対処している。
- 参考スコア(独自算出の注目度): 13.813769457594216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development and widespread application of Large Language Models (LLMs), the use of Machine-Generated Text (MGT) has become increasingly common, bringing with it potential risks, especially in terms of quality and integrity in fields like news, education, and science. Current research mainly focuses on purely MGT detection without adequately addressing mixed scenarios, including AI-revised Human-Written Text (HWT) or human-revised MGT. To tackle this challenge, we define mixtext, a form of mixed text involving both AI and human-generated content. Then, we introduce MixSet, the first dataset dedicated to studying these mixtext scenarios. Leveraging MixSet, we executed comprehensive experiments to assess the efficacy of prevalent MGT detectors in handling mixtext situations, evaluating their performance in terms of effectiveness, robustness, and generalization. Our findings reveal that existing detectors struggle to identify mixtext, particularly in dealing with subtle modifications and style adaptability. This research underscores the urgent need for more fine-grain detectors tailored for mixtext, offering valuable insights for future research. Code and Models are available at https://github.com/Dongping-Chen/MixSet.
- Abstract(参考訳): LLM(Large Language Models)の急速な開発と普及に伴い、MGT(Machine-Generated Text)の使用はますます一般的になり、特にニュース、教育、科学といった分野における品質と整合性の観点から、潜在的なリスクをもたらしている。
現在の研究は、AI改訂HWT(Human-Written Text)や人修正MGT(Human-Written Text)など、混合シナリオに適切に対処することなく、純粋なMGT検出に焦点を当てている。
この課題に対処するために、AIと人為的コンテンツの両方を含む混合テキストの形式であるmixtextを定義します。
次に、これらのmixtextシナリオを研究するための最初のデータセットであるMixSetを紹介します。
MixSet を利用した総合的な実験を行い,その有効性,堅牢性,一般化性について検討した。
既存の検出器はミックステキストの識別に苦慮しており、特に微妙な修正やスタイル適応性に対処している。
この研究は、ミックステキストに適した細粒度検出器の緊急ニーズを強調し、将来の研究に有用な洞察を提供する。
コードとモデルはhttps://github.com/Dongping-Chen/MixSet.comで入手できる。
関連論文リスト
- M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection [69.41274756177336]
大規模言語モデル (LLMs) は様々なチャネルにまたがる機械生成テキスト (MGT) を前例のない急激な増加をもたらした。
このことは、その潜在的な誤用と社会的意味に関する正当な懸念を提起する。
本稿では,MGT-M4GT-Benchの多言語,マルチドメイン,マルチジェネレータコーパスに基づく新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-02-17T02:50:33Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - DetectGPT-SC: Improving Detection of Text Generated by Large Language
Models through Self-Consistency with Masked Predictions [13.077729125193434]
既存の検出器は、人間が生成したテキストとAI生成したテキストの間に分配ギャップがあるという仮定に基づいて構築されている。
また,ChatGPTのような大規模言語モデルは,テキスト生成や継続において強い自己整合性を示すことがわかった。
マスク付き予測を用いた自己整合性に基づくAI生成テキストの検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T01:23:10Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box
Machine-Generated Text Detection [69.29017069438228]
大規模言語モデル(LLM)は,多様なユーザクエリに対して,流動的な応答を生成する優れた能力を示している。
これはまた、ジャーナリズム、教育、アカデミアにおけるそのようなテキストの誤用の可能性への懸念も提起している。
本研究では,機械が生成したテキストを検知し,潜在的誤用を特定できる自動システムの構築を試みている。
論文 参考訳(メタデータ) (2023-05-24T08:55:11Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Data
Limitation With Contrastive Learning [14.637303913878435]
低リソースシナリオ下でMGTを検出するために,コヒーレンスに基づくコントラスト学習モデルCoCoを提案する。
言語的特徴を活用するために,グラフ形式でコヒーレンス情報をテキスト表現にエンコードする。
2つの公開データセットと2つの自己構築データセットの実験結果は、我々のアプローチが最先端の手法を大幅に上回っていることを証明している。
論文 参考訳(メタデータ) (2022-12-20T15:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。