Shape-Dependence of Spontaneous Photon Emission by Quantum Electron
Wavepackets and the QED Origin of Bunched Electron Beam Superradiance
- URL: http://arxiv.org/abs/2401.05978v1
- Date: Thu, 11 Jan 2024 15:24:30 GMT
- Title: Shape-Dependence of Spontaneous Photon Emission by Quantum Electron
Wavepackets and the QED Origin of Bunched Electron Beam Superradiance
- Authors: Bin Zhang, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail
Tokman, Yiming Pan, Avraham Gover
- Abstract summary: We show that the quantum state of the emitted photons is non-classical and does depend on the QEW shape.
This non-classicality originates from the shape dependent off-diagonal terms of the photon density matrix.
Our findings indicate that in the case of a modulated density QEWs beam, the phase of the off-diagonal terms of the photon state emitted by the modulated QEWs is the harbinger of bunched beam superradiance.
- Score: 1.6285435061281421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been shown that the spontaneous emission rate of photons by free
electrons, unlike stimulated emission, is independent of the shape or
modulation of the quantum electron wavefunction (QEW). Nevertheless, here we
show that the quantum state of the emitted photons is non-classical and does
depend on the QEW shape. This non-classicality originates from the shape
dependent off-diagonal terms of the photon density matrix. This is manifested
in the Wigner distribution function and would be observable experimentally
through Homodyne detection techniques as a squeezing effect. Considering a
scheme of electrons interaction with a single microcavity mode, we present a
QED formulation of spontaneous emission by multiple modulated QEWs through a
build-up process. Our findings indicate that in the case of a density modulated
QEWs beam, the phase of the off-diagonal terms of the photon state emitted by
the modulated QEWs is the harbinger of bunched beam superradiance, where the
spontaneous emission is proportional to N_e^2. This observation offers a
potential for enhancement of other quantum electron interactions with quantum
systems by a modulated QEWs beam carrying coherence and quantum properties of
the modulation.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Coherent excitation of bound electron quantum state with quantum
electron wavepackets [1.5078167156049138]
We present a fully quantum model for excitation of a bound electron based on the free-electron bound-electron resonant interaction (FEBERI) scheme.
The study indicates a possibility of engineering the quantum state of a TLS by utilizing a beam of shaped QEWs.
arXiv Detail & Related papers (2022-06-22T01:56:14Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - An optical lattice with sound [0.0]
Quantised sound waves -- phonons -- govern the elastic response of crystalline materials.
We create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC)
Our results pave the way for exploring the rich physics of elasticity in quantum solids.
arXiv Detail & Related papers (2021-04-28T17:59:27Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Control of quantum electrodynamical processes by shaping electron
wavepackets [0.0]
We show that free-electron wave-shaping can be used to engineer quantum interferences that alter the results of scattering processes in quantum electrodynamical processes.
As an example, we apply our concept to Bremsstrahlung, a ubiquitous phenomenon that occurs in X-ray sources for state-of-the-art medical imaging.
arXiv Detail & Related papers (2020-11-02T04:01:09Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.