Observation of quantum entanglement between free electrons and photons
- URL: http://arxiv.org/abs/2504.13047v1
- Date: Thu, 17 Apr 2025 16:03:05 GMT
- Title: Observation of quantum entanglement between free electrons and photons
- Authors: Jan-Wilke Henke, Hao Jeng, Murat Sivis, Claus Ropers,
- Abstract summary: We demonstrate quantum entanglement between free electrons and photons.<n>We show that entanglement is produced when an electron, prepared in a superposition of two beams, passes a nanostructure.<n>We anticipate developments in enhanced electron imaging and spectroscopy beyond the standard quantum limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement is central to both the foundations of quantum mechanics and the development of new technologies in information processing, communication, and sensing. Entanglement has been realised in a variety of physical systems, spanning atoms, ions, photons, collective excitations, and hybrid combinations of particles. Remarkably, however, photons and free electrons -- the quanta of light and their most elementary sources -- have never been observed in an entangled state. Here, we demonstrate quantum entanglement between free electrons and photons. We show that entanglement is produced when an electron, prepared in a superposition of two beams, passes a nanostructure and generates transition radiation in a polarisation state tied to the electron path. By implementing quantum state tomography, we reconstruct the full density matrix of the electron-photon pair, and show that the Peres-Horodecki separability criterion is violated by more than 7 standard deviations. Based on this foundational element of emerging free-electron quantum optics, we anticipate manifold developments in enhanced electron imaging and spectroscopy beyond the standard quantum limit. More broadly, the ability to generate and measure entanglement opens electron microscopy to previously inaccessible quantum observables and correlations in solids and nanostructures.
Related papers
- Experimental Verification of Electron-Photon Entanglement [39.58317527488534]
Entanglement, a key resource of emerging quantum technologies, describes correlations between particles that defy classical physics.<n>We demonstrate entanglement in electron-photon pairs generated via cathodoluminescence in a transmission electron microscope.<n>Our work paves the way for exploring quantum correlations in free-electron systems and their application to quantum-enhanced imaging techniques on the nanoscale.
arXiv Detail & Related papers (2025-04-17T17:58:50Z) - Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Quantum Optics with Recoiled Free Electrons [0.0]
We show how to generate photon and electron-photon Bell, Greenberger-Horne-Zeilinger (GHZ) and NOON states, coherent states, squeezed vacuum (including bright squeezed vacuum) and twin beams.
We predict a new class of photon and electron-photon quantum states shaped with the photon recoil effect (recoil-induced shaping)
These results have wide potential applications including quantum computing and communication with photons and free electrons, and open up a novel avenue for ultrafast electron microscopy and next-generation free-electron sources.
arXiv Detail & Related papers (2024-05-10T16:02:40Z) - Maximal quantum interaction between free electrons and photons [18.53651187347193]
Free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states.
We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction.
We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions.
arXiv Detail & Related papers (2024-03-30T14:11:00Z) - Comparative study of quantum emitter fabrication in wide bandgap
materials using localized electron irradiation [33.18585053467985]
Quantum light sources are crucial foundational components for various quantum technology applications.
With the rapid development of quantum technology, there has been a growing demand for materials with the capability of hosting quantum emitters.
One such material platform uses fluorescent defects in hexagonal boron nitride (hBN) that can host deep sublevels within the bandgap.
The localized electron irradiation has shown its effectiveness in generating deep sublevels to induce single emitters in hBN.
arXiv Detail & Related papers (2023-12-05T16:12:37Z) - Free Electrons Can Induce Entanglement Between Photons [0.0]
Entanglement of photons is a fundamental feature of quantum mechanics.
Recent developments in electron microscopy enable to control the quantum interaction between free electrons and light.
We show that free electrons can create entanglement and bunching of light.
arXiv Detail & Related papers (2021-11-28T15:42:20Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Ultrafast non-destructive measurement of the quantum state of light
using free electrons [0.0]
We propose using free electrons for quantum-optical detection of the complete quantum state of light.
We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics.
Our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.
arXiv Detail & Related papers (2020-12-22T14:59:31Z) - Shaping Quantum Photonic States Using Free Electrons [0.0]
We explore the shaping of photon statistics using the quantum interactions of free electrons with photons in optical cavities.
We find a variety of quantum states of light that can be generated by a judicious choice of the input light and electron states.
By exploiting the degrees of freedom of arbitrary electron-photon quantum states, we may achieve complete control over the statistics and correlations of output photonic states.
arXiv Detail & Related papers (2020-11-02T20:59:44Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.