Precise characterization of a silicon carbide waveguide fiber interface
- URL: http://arxiv.org/abs/2401.06096v3
- Date: Thu, 2 May 2024 10:51:08 GMT
- Title: Precise characterization of a silicon carbide waveguide fiber interface
- Authors: Marcel Krumrein, Raphael Nold, Flavie Davidson-Marquis, Arthur Bourama, Lukas Niechziol, Timo Steidl, Ruoming Peng, Jonathan Körber, Rainer Stöhr, Nils Gross, Jurgen Smet, Jawad Ul-Hassan, Péter Udvarhelyi, Adam Gali, Florian Kaiser, Jörg Wrachtrup,
- Abstract summary: Emitters in high refractive index materials like 4H-SiC suffer from reduced detection of photons because of losses caused by total internal reflection.
We create a bright single photon source based on waveguide integrated V2 defects in 4H-SiC and achieve an overall photon count rate of 181 kilo-counts per second.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emitters in high refractive index materials like 4H-SiC suffer from reduced detection of photons because of losses caused by total internal reflection. Thus, integration into efficient nanophotonic structures which couple the emission of photons to a well defined waveguide mode can significantly enhance the photon detection efficiency. In addition, interfacing this waveguide to a classical fiber network is of similar importance to detect the photons and perform experiments. Here, we show a waveguide fiber interface in SiC. By careful measurements we determine efficiencies exceeding 93 % for the transfer of photons from SiC nanobeams to fibers. We use this interface to create a bright single photon source based on waveguide integrated V2 defects in 4H-SiC and achieve an overall photon count rate of 181 kilo-counts per second. We observe and quantify the strain induced shift of the ground state spin states and demonstrate coherent control of the electron spin with a coherence time of T2=42.5 $\rm\mu$s.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Fabrication of Sawfish photonic crystal cavities in bulk diamond [0.0]
"Sawfish" cavities are proposed to enhance the emission rate by a factor of 46 and couple photons into a single-mode fiber with an efficiency of 88%.
The presented process allows for the fabrication of fully suspended devices with a total length of 20.5 $mu$m and features size as small as 40 nm.
arXiv Detail & Related papers (2023-11-07T00:05:46Z) - On-Demand Generation of Indistinguishable Photons in the Telecom C-Band
using Quantum Dot Devices [31.114245664719455]
We demonstrate the coherent on-demand generation of in photons in the telecom C-band from single QD devices.
The research represents a significant advancement in photon-indistinguishability of single photons emitted directly in the telecom C-band.
arXiv Detail & Related papers (2023-06-14T17:59:03Z) - Observation of large spontaneous emission rate enhancement of quantum
dots in a broken-symmetry slow-light waveguide [0.0]
We demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs)
The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region.
We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes.
arXiv Detail & Related papers (2022-08-12T18:42:16Z) - Cavity-Enhanced 2D Material Quantum Emitters Deterministically
Integrated with Silicon Nitride Microresonators [0.3518016233072556]
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters.
We demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators.
arXiv Detail & Related papers (2022-06-29T18:16:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.