論文の概要: ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
- arxiv url: http://arxiv.org/abs/2401.06310v3
- Date: Sun, 14 Jul 2024 21:17:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:14:47.312067
- Title: ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
- Title(参考訳): ViSAGe:テキスト・画像生成における視覚ステレオタイプの分析
- Authors: Akshita Jha, Vinodkumar Prabhakaran, Remi Denton, Sarah Laszlo, Shachi Dave, Rida Qadri, Chandan K. Reddy, Sunipa Dev,
- Abstract要約: 我々は、T2Iモデルにおける国籍に基づくステレオタイプの評価を可能にするために、ViSAGeデータセットを導入する。
また, 他の属性と比較して, ViSAGe のステレオタイプ属性は, 対応するアイデンティティの生成画像中に存在する可能性が示唆された。
- 参考スコア(独自算出の注目度): 24.862839173648467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have shown that Text-to-Image (T2I) model generations can reflect social stereotypes present in the real world. However, existing approaches for evaluating stereotypes have a noticeable lack of coverage of global identity groups and their associated stereotypes. To address this gap, we introduce the ViSAGe (Visual Stereotypes Around the Globe) dataset to enable the evaluation of known nationality-based stereotypes in T2I models, across 135 nationalities. We enrich an existing textual stereotype resource by distinguishing between stereotypical associations that are more likely to have visual depictions, such as `sombrero', from those that are less visually concrete, such as 'attractive'. We demonstrate ViSAGe's utility through a multi-faceted evaluation of T2I generations. First, we show that stereotypical attributes in ViSAGe are thrice as likely to be present in generated images of corresponding identities as compared to other attributes, and that the offensiveness of these depictions is especially higher for identities from Africa, South America, and South East Asia. Second, we assess the stereotypical pull of visual depictions of identity groups, which reveals how the 'default' representations of all identity groups in ViSAGe have a pull towards stereotypical depictions, and that this pull is even more prominent for identity groups from the Global South. CONTENT WARNING: Some examples contain offensive stereotypes.
- Abstract(参考訳): 近年の研究では、テキスト・トゥ・イメージ(T2I)モデル世代が現実世界に存在する社会的ステレオタイプを反映できることが示されている。
しかし、既存のステレオタイプ評価手法では、グローバルアイデンティティグループとその関連ステレオタイプをカバーできないことが顕著である。
このギャップに対処するために、135の国籍を含むT2Iモデルにおいて、既知の国籍に基づくステレオタイプの評価を可能にするために、ViSAGeデータセット(Visual Stereotypes around the Globe)を導入する。
我々は,「ソンブレロ」のような視覚的描写の可能性が高いステレオタイプアソシエーションと,「魅力的」のような視覚的に具体的でないものとを区別することにより,既存のテキストステレオタイプリソースを豊かにする。
我々は、T2I世代を多面的に評価することで、ViSAGeの実用性を実証する。
第1に,ViSAGeのステレオタイプ特性は,他の属性と比較して,対応するアイデンティティの生成画像に存在する可能性が低く,アフリカ,南アメリカ,東南アジアのアイデンティティに対して,これらの描写の攻撃性が特に高いことを示す。
第2に,ViSAGeにおけるすべてのアイデンティティ群の「デフォルト」表現が,ステレオタイプ的描写へと向けられていること,また,このプルがグローバル・サウスのアイデンティティ・グループにとってさらに顕著であることを明らかにする。
Content WARNING: 攻撃的なステレオタイプを含むいくつかの例。
関連論文リスト
- Who is better at math, Jenny or Jingzhen? Uncovering Stereotypes in Large Language Models [9.734705470760511]
我々はGlobalBiasを使って世界中の幅広いステレオタイプを研究しています。
与えられた名前に基づいて文字プロファイルを生成し、モデル出力におけるステレオタイプの有効性を評価する。
論文 参考訳(メタデータ) (2024-07-09T14:52:52Z) - Vision-Language Models under Cultural and Inclusive Considerations [53.614528867159706]
視覚言語モデル(VLM)は、日常生活の画像を記述することで視覚障害者を支援する。
現在の評価データセットは、多様な文化的ユーザ背景や、このユースケースの状況を反映していない可能性がある。
我々は、字幕の好みを決定するための調査を作成し、視覚障害者によって撮影された画像を含む既存のデータセットであるVizWizをフィルタリングすることで、文化中心の評価ベンチマークを提案する。
次に,複数のVLMを評価し,その信頼性を文化的に多様な環境で視覚アシスタントとして検証した。
論文 参考訳(メタデータ) (2024-07-08T17:50:00Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - 'Person' == Light-skinned, Western Man, and Sexualization of Women of
Color: Stereotypes in Stable Diffusion [5.870257045294649]
我々は、最も人気のあるテキスト・画像生成装置の1つに埋め込まれたステレオタイプについて研究する。
性別・国籍・大陸アイデンティティのステレオタイプが,そのような情報がない状態で安定拡散表示を行うかを検討する。
論文 参考訳(メタデータ) (2023-10-30T19:57:01Z) - Building Socio-culturally Inclusive Stereotype Resources with Community
Engagement [9.131536842607069]
インド社会の文脈における評価資源の社会的に意識した拡大、特にステレオタイピングの害について示す。
結果として得られた資源は、インドの文脈で知られているステレオタイプの数を増やし、多くのユニークなアイデンティティにわたって1000以上のステレオタイプを拡大する。
論文 参考訳(メタデータ) (2023-07-20T01:26:34Z) - SeeGULL: A Stereotype Benchmark with Broad Geo-Cultural Coverage
Leveraging Generative Models [15.145145928670827]
SeeGULLは英語の広い範囲のステレオタイプデータセットである。
6大陸にまたがる8つの異なる地政学的領域にまたがる178か国にまたがるアイデンティティグループに関するステレオタイプを含んでいる。
また、異なるステレオタイプに対するきめ細かい攻撃性スコアも含み、そのグローバルな格差を示す。
論文 参考訳(メタデータ) (2023-05-19T17:30:19Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
危険で複雑なステレオタイプを増幅する機械学習モデルの可能性を検討する。
さまざまな通常のプロンプトがステレオタイプを生成しており、それらは単に特性、記述子、職業、オブジェクトに言及するプロンプトを含む。
論文 参考訳(メタデータ) (2022-11-07T18:31:07Z) - The Principle of Diversity: Training Stronger Vision Transformers Calls
for Reducing All Levels of Redundancy [111.49944789602884]
本稿では,パッチ埋め込み,アテンションマップ,ウェイトスペースという3つのレベルにおいて,冗長性のユビキタスな存在を体系的に研究する。
各レベルにおける表現の多様性とカバレッジを促進するための対応正規化器を提案する。
論文 参考訳(メタデータ) (2022-03-12T04:48:12Z) - Fairness for Image Generation with Uncertain Sensitive Attributes [97.81354305427871]
この研究は、画像超解像のような生成手順の文脈における公平性の問題に取り組む。
伝統的群フェアネスの定義は通常、指定された保護された群に関して定義されるが、本質的な真偽は存在しないことを強調する。
人口比率の自然拡大はグループ化に強く依存しており、明白に達成可能であることを示す。
論文 参考訳(メタデータ) (2021-06-23T06:17:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。