論文の概要: A Temporal-Spectral Fusion Transformer with Subject-Specific Adapter for Enhancing RSVP-BCI Decoding
- arxiv url: http://arxiv.org/abs/2401.06340v2
- Date: Thu, 11 Jul 2024 05:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:27:37.518671
- Title: A Temporal-Spectral Fusion Transformer with Subject-Specific Adapter for Enhancing RSVP-BCI Decoding
- Title(参考訳): RSVP-BCI復号化のための主題特化適応型時間スペクトル核融合変換器
- Authors: Xujin Li, Wei Wei, Shuang Qiu, Huiguang He,
- Abstract要約: RSVP-based Brain-Computer Interface (BCI) は脳波(EEG)信号を用いた標的探索のための効率的な技術である。
従来の復号法は、新しい被験者からのかなりの量のトレーニングデータに依存している。
そこで本研究では,既存の対象データから学習したモデルの知識を高速に伝達し,新たな対象データからデコードする対象特化アダプタを提案する。
- 参考スコア(独自算出の注目度): 15.000487099591776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
- Abstract(参考訳): The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) は脳波(EEG)信号を用いたターゲット検索のための効率的な技術である。
従来の復号法の性能改善は、BCIシステムの準備時間を増加させる新しい被験者のトレーニングデータに大きく依存している。
いくつかの研究は、既存の被験者のデータを導入して、新しい被験者のデータに対するパフォーマンス改善の依存を減らすが、その最適化戦略は、幅広いデータによる敵の学習に基づいて、準備過程のトレーニング時間を増加させる。
さらに,従来の手法では脳波信号の単一ビュー情報のみに焦点が当てられていたが,他のビューからの情報は無視され,性能がさらに向上する可能性がある。
準備時間を短縮しつつデコード性能を向上させるため,被験者固有アダプタ (TSformer-SA) を用いた時間スペクトル融合トランスを提案する。
具体的には,脳波の時間的信号と分光画像から抽出した2視点特徴から情報伝達と共通表現の抽出を容易にするために,クロスビューインタラクションモジュールを提案する。
次に、注意に基づく融合モジュールが2つのビューの特徴を融合させ、分類のための包括的な識別的特徴を得る。
さらに、同一の脳波信号の2つのビュー間の特徴的類似性を最大化するために、多視点整合損失を提案する。
最後に,既存の対象データから学習したモデルの知識を高速に伝達し,新たな対象データからデコードする対象特化アダプタを提案する。
実験の結果,TSformer-SAは比較法を著しく上回り,新しい被験者の限られたトレーニングデータで優れた性能を発揮することがわかった。
これにより、効率的な復号化とBCIシステムの実用的迅速な展開が容易になる。
関連論文リスト
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Data Augmentation for Traffic Classification [54.92823760790628]
Data Augmentation (DA) はコンピュータビジョン(CV)と自然言語処理(NLP)に広く採用されている技術である。
DAはネットワークのコンテキスト、特にトラフィック分類(TC)タスクにおいて、牽引力を得るのに苦労しています。
論文 参考訳(メタデータ) (2024-01-19T15:25:09Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Improving the performance of EEG decoding using anchored-STFT in
conjunction with gradient norm adversarial augmentation [0.22835610890984162]
EEG信号は空間分解能が低く、しばしばノイズやアーティファクトで歪められる。
ディープラーニングアルゴリズムは、隠れた意味のあるパターンを学習するのに非常に効率的であることが証明されている。
本研究では,新しい深層学習モデルと組み合わせた入力生成(機能抽出)手法を提案する。
論文 参考訳(メタデータ) (2020-11-30T11:18:06Z) - Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A
Complete Pipeline [54.73337667795997]
移動学習(TL)は、新しい被験者の校正作業を減らすために、運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)に広く用いられている。
本稿では,MIベースのBCIの3つのコンポーネント(空間フィルタリング,特徴工学,分類)すべてにおいてTLが考慮できることを示す。
論文 参考訳(メタデータ) (2020-07-03T23:44:21Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。