Time series prediction of open quantum system dynamics
- URL: http://arxiv.org/abs/2401.06380v1
- Date: Fri, 12 Jan 2024 05:02:15 GMT
- Title: Time series prediction of open quantum system dynamics
- Authors: Zhao-Wei Wang and Zhao-Ming Wang
- Abstract summary: Time series prediction (TSP) has been widely used in various fields, such as life sciences and finance, to forecast future trends.
We employ deep learning techniques to train a TSP model and evaluate its performance by comparison with exact solution.
Our results show that the trained model has the ability to effectively capture the inherent characteristics of time series for both short-term and long-term forecasting.
- Score: 1.0521195067086913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series prediction (TSP) has been widely used in various fields, such as
life sciences and finance, to forecast future trends based on historical data.
However, to date, there has been relatively little research conducted on the
TSP for quantum physics. In this paper, we explore the potential application of
TSP in forecasting the dynamical evolution of open quantum systems. We employ
deep learning techniques to train a TSP model and evaluate its performance by
comparison with exact solution. We use the ratio of the prediction step length
and the sequence length to define short and long-term forecasting. Our results
show that the trained model has the ability to effectively capture the inherent
characteristics of time series for both short-term and long-term forecasting.
Accurate predictions for different coupling intensities and initial states are
obtained. Furthermore, we use our method to train another model and find that
it can successfully predict the steady state of the system. These findings
suggests that TSP is a valuable tool for the prediction of the dynamics in open
quantum systems.
Related papers
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
We propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA)
KIA captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space.
This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior.
arXiv Detail & Related papers (2023-09-19T03:42:55Z) - Data-driven Quantum Dynamical Embedding Method for Long-term Prediction on Near-term Quantum Computers [4.821462994335231]
We introduce a data-driven method designed for long-term time series prediction with quantum dynamical embedding (QDE)
This approach enables a trainable embedding of the data space into an extended state space.
We implement this model on the Origin ''Wukong'' superconducting quantum processor.
arXiv Detail & Related papers (2023-05-25T12:12:49Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Spatiotemporal Adaptive Neural Network for Long-term Forecasting of
Financial Time Series [0.2793095554369281]
We investigate whether deep neural networks (DNNs) can be used to forecast time series (TS) forecasts conjointly.
We make use of the dynamic factor graph (DFG) to build a multivariate autoregressive model.
With ACTM, it is possible to vary the autoregressive order of a TS model over time and model a larger set of probability distributions.
arXiv Detail & Related papers (2020-03-27T00:53:11Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.