Data-driven Quantum Dynamical Embedding Method for Long-term Prediction on Near-term Quantum Computers
- URL: http://arxiv.org/abs/2305.15976v3
- Date: Sat, 13 Jul 2024 09:02:58 GMT
- Title: Data-driven Quantum Dynamical Embedding Method for Long-term Prediction on Near-term Quantum Computers
- Authors: Tai-Ping Sun, Zhao-Yun Chen, Cheng Xue, Huan-Yu Liu, Xi-Ning Zhuang, Yun-Jie Wang, Shi-Xin Ma, Hai-Feng Zhang, Yu-Chun Wu, Guo-Ping Guo,
- Abstract summary: We introduce a data-driven method designed for long-term time series prediction with quantum dynamical embedding (QDE)
This approach enables a trainable embedding of the data space into an extended state space.
We implement this model on the Origin ''Wukong'' superconducting quantum processor.
- Score: 4.821462994335231
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The increasing focus on long-term time series prediction across various fields has been significantly strengthened by advancements in quantum computation. In this paper, we introduce a data-driven method designed for long-term time series prediction with quantum dynamical embedding (QDE). This approach enables a trainable embedding of the data space into an extended state space, allowing for the recursive retrieval of time series information. Based on its independence of time series length, this method achieves depth-efficient quantum circuits that are crucial for near-term quantum computers. Numerical simulations demonstrate the model's improved performance in prediction accuracy and resource efficiency over existing methods, as well as its effective denoising capabilities. We implement this model on the Origin ''Wukong'' superconducting quantum processor with a learnable error-cancellation layer (LECL) for error mitigation, further validating the practical applicability of our approach on near-term quantum devices. Furthermore, the theoretical analysis of the QDE's dynamical properties and its universality enhances its potential for time series prediction. This study establishes a significant step towards the processing of long-term time series on near-term quantum computers, integrating data-driven learning with discrete dynamical embedding for enhanced forecasting capabilities.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
This paper introduces the Quantum Fast Weight Programmers (QFWP) as a solution to the temporal or sequential learning challenge.
The proposed QFWP model achieves learning of temporal dependencies without necessitating the use of quantum recurrent neural networks.
Numerical simulations conducted in this study showcase the efficacy of the proposed QFWP model in both time-series prediction and RL tasks.
arXiv Detail & Related papers (2024-02-27T18:53:18Z) - Time series prediction of open quantum system dynamics [1.0521195067086913]
Time series prediction (TSP) has been widely used in various fields, such as life sciences and finance, to forecast future trends.
We employ deep learning techniques to train a TSP model and evaluate its performance by comparison with exact solution.
Our results show that the trained model has the ability to effectively capture the inherent characteristics of time series for both short-term and long-term forecasting.
arXiv Detail & Related papers (2024-01-12T05:02:15Z) - Quantum Next Generation Reservoir Computing: An Efficient Quantum
Algorithm for Forecasting Quantum Dynamics [1.9260081982051918]
We show that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems.
We propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique.
arXiv Detail & Related papers (2023-08-28T00:34:40Z) - A Model for Circuit Execution Runtime And Its Implications for Quantum
Kernels At Practical Data Set Sizes [0.5906031288935515]
We present a model for the total circuit execution time required on quantum circuits.
We also introduce the notion of an "effective number of quantum volume layers of a circuit"
At current speeds of quantum computers, our model predicts data sets can be processed in order a few hours.
arXiv Detail & Related papers (2023-07-11T02:38:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Time Series Quantum Reservoir Computing with Weak and Projective
Measurements [0.0]
We show that it is possible to exploit the quantumness of the reservoir and to obtain ideal performance.
One consists in rewinding part of the dynamics determined by the fading memory of the reservoir and storing the corresponding data of the input sequence.
The other employs weak measurements operating online at the trade-off where information can be extracted accurately and without hindering the needed memory.
arXiv Detail & Related papers (2022-05-13T17:57:39Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.