What should I say? -- Interacting with AI and Natural Language
Interfaces
- URL: http://arxiv.org/abs/2401.06382v1
- Date: Fri, 12 Jan 2024 05:10:23 GMT
- Title: What should I say? -- Interacting with AI and Natural Language
Interfaces
- Authors: Mark Adkins
- Abstract summary: The Human-AI Interaction (HAI) sub-field has emerged from the Human-Computer Interaction (HCI) field and aims to examine this very notion.
Prior research suggests that theory of mind representations are crucial to successful and effortless communication, however very little is understood when it comes to how theory of mind representations are established when interacting with AI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Artificial Intelligence (AI) technology becomes more and more prevalent,
it becomes increasingly important to explore how we as humans interact with AI.
The Human-AI Interaction (HAI) sub-field has emerged from the Human-Computer
Interaction (HCI) field and aims to examine this very notion. Many interaction
patterns have been implemented without fully understanding the changes in
required cognition as well as the cognitive science implications of using these
alternative interfaces that aim to be more human-like in nature. Prior research
suggests that theory of mind representations are crucial to successful and
effortless communication, however very little is understood when it comes to
how theory of mind representations are established when interacting with AI.
Related papers
- Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
We advocate for a shift toward viewing AI as a learning partner, akin to a student who learns from interactions with humans.
We suggest that a "third mind" emerges through collaborative human-AI relationships.
arXiv Detail & Related papers (2024-10-07T19:19:39Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
Key challenge exists in ensuring that humans are equipped with the required critical thinking and AI literacy skills.
This paper provides a first step toward conceptualizing the notion of critical learner interaction with AI.
Using both theoretical models and empirical data, our preliminary findings suggest a general lack of Deep interaction with AI during the writing process.
arXiv Detail & Related papers (2024-04-10T12:12:50Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
Leveraging Artificial Intelligence in decision support systems has disproportionately focused on technological advancements.
A human-centered perspective attempts to alleviate this concern by designing AI solutions for seamless integration with existing processes.
arXiv Detail & Related papers (2023-10-30T17:46:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Player-AI Interaction: What Neural Network Games Reveal About AI as Play [14.63311356668699]
This paper argues that games are an ideal domain for studying and experimenting with how humans interact with AI.
Through a systematic survey of neural network games, we identified the dominant interaction metaphors and AI interaction patterns.
Our work suggests that game and UX designers should consider flow to structure the learning curve of human-AI interaction.
arXiv Detail & Related papers (2021-01-15T17:07:03Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
We argue that the next generation of AI must embrace "dark" humanlike common sense for solving novel tasks.
We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense.
arXiv Detail & Related papers (2020-04-20T04:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.