3D Reconstruction of Interacting Multi-Person in Clothing from a Single Image
- URL: http://arxiv.org/abs/2401.06415v3
- Date: Tue, 2 Apr 2024 04:00:30 GMT
- Title: 3D Reconstruction of Interacting Multi-Person in Clothing from a Single Image
- Authors: Junuk Cha, Hansol Lee, Jaewon Kim, Nhat Nguyen Bao Truong, Jae Shin Yoon, Seungryul Baek,
- Abstract summary: This paper introduces a novel pipeline to reconstruct the geometry of interacting multi-person in clothing on a globally coherent scene space from a single image.
We overcome this challenge by utilizing two human priors for complete 3D geometry and surface contacts.
The results demonstrate that our method is complete, globally coherent, and physically plausible compared to existing methods.
- Score: 8.900009931200955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel pipeline to reconstruct the geometry of interacting multi-person in clothing on a globally coherent scene space from a single image. The main challenge arises from the occlusion: a part of a human body is not visible from a single view due to the occlusion by others or the self, which introduces missing geometry and physical implausibility (e.g., penetration). We overcome this challenge by utilizing two human priors for complete 3D geometry and surface contacts. For the geometry prior, an encoder learns to regress the image of a person with missing body parts to the latent vectors; a decoder decodes these vectors to produce 3D features of the associated geometry; and an implicit network combines these features with a surface normal map to reconstruct a complete and detailed 3D humans. For the contact prior, we develop an image-space contact detector that outputs a probability distribution of surface contacts between people in 3D. We use these priors to globally refine the body poses, enabling the penetration-free and accurate reconstruction of interacting multi-person in clothing on the scene space. The results demonstrate that our method is complete, globally coherent, and physically plausible compared to existing methods.
Related papers
- DressRecon: Freeform 4D Human Reconstruction from Monocular Video [64.61230035671885]
We present a method to reconstruct time-consistent human body models from monocular videos.
We focus on extremely loose clothing or handheld object interactions.
DressRecon yields higher-fidelity 3D reconstructions than prior art.
arXiv Detail & Related papers (2024-09-30T17:59:15Z) - Gaussian Control with Hierarchical Semantic Graphs in 3D Human Recovery [15.58274601909995]
We introduce the Hierarchical Graph Human Gaussian Control (HUGS) framework for achieving high-fidelity 3D human reconstruction.
Our approach involves leveraging explicitly semantic priors of body parts to ensure the consistency of geometric topology.
Our method exhibits superior performance in human body reconstruction, particularly in enhancing surface details and accurately reconstructing body part junctions.
arXiv Detail & Related papers (2024-05-21T03:40:56Z) - Joint Reconstruction of 3D Human and Object via Contact-Based Refinement Transformer [58.98785899556135]
We present a novel joint 3D human-object reconstruction method (CONTHO) that effectively exploits contact information between humans and objects.
There are two core designs in our system: 1) 3D-guided contact estimation and 2) contact-based 3D human and object refinement.
arXiv Detail & Related papers (2024-04-07T06:01:49Z) - GALA: Generating Animatable Layered Assets from a Single Scan [20.310367593475508]
We present GALA, a framework that takes as input a single-layer clothed 3D human mesh and decomposes it into complete multi-layered 3D assets.
The outputs can then be combined with other assets to create novel clothed human avatars with any pose.
arXiv Detail & Related papers (2024-01-23T18:59:59Z) - DECO: Dense Estimation of 3D Human-Scene Contact In The Wild [54.44345845842109]
We train a novel 3D contact detector that uses both body-part-driven and scene-context-driven attention to estimate contact on the SMPL body.
We significantly outperform existing SOTA methods across all benchmarks.
We also show qualitatively that DECO generalizes well to diverse and challenging real-world human interactions in natural images.
arXiv Detail & Related papers (2023-09-26T21:21:07Z) - USR: Unsupervised Separated 3D Garment and Human Reconstruction via
Geometry and Semantic Consistency [41.89803177312638]
We propose an unsupervised separated 3D garments and human reconstruction model (USR), which reconstructs the human body and authentic textured clothes in layers without 3D models.
Our method proposes a generalized surface-aware neural radiance field to learn the mapping between sparse multi-view images and geometries of the dressed people.
arXiv Detail & Related papers (2023-02-21T08:48:27Z) - BodyMap: Learning Full-Body Dense Correspondence Map [19.13654133912062]
BodyMap is a new framework for obtaining high-definition full-body and continuous dense correspondence between in-the-wild images of humans and the surface of a 3D template model.
Dense correspondence between humans carries powerful semantic information that can be utilized to solve fundamental problems for full-body understanding.
arXiv Detail & Related papers (2022-05-18T17:58:11Z) - Human-Aware Object Placement for Visual Environment Reconstruction [63.14733166375534]
We show that human-scene interactions can be leveraged to improve the 3D reconstruction of a scene from a monocular RGB video.
Our key idea is that, as a person moves through a scene and interacts with it, we accumulate HSIs across multiple input images.
We show that our scene reconstruction can be used to refine the initial 3D human pose and shape estimation.
arXiv Detail & Related papers (2022-03-07T18:59:02Z) - Multi-person Implicit Reconstruction from a Single Image [37.6877421030774]
We present a new end-to-end learning framework to obtain detailed and spatially coherent reconstructions of multiple people from a single image.
Existing multi-person methods suffer from two main drawbacks: they are often model-based and cannot capture accurate 3D models of people with loose clothing and hair.
arXiv Detail & Related papers (2021-04-19T13:21:55Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
We aim to recover 3D objects with semantic parts and can be directly edited.
Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders.
Our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction.
arXiv Detail & Related papers (2020-05-27T12:16:24Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.