DressRecon: Freeform 4D Human Reconstruction from Monocular Video
- URL: http://arxiv.org/abs/2409.20563v2
- Date: Tue, 8 Oct 2024 18:56:34 GMT
- Title: DressRecon: Freeform 4D Human Reconstruction from Monocular Video
- Authors: Jeff Tan, Donglai Xiang, Shubham Tulsiani, Deva Ramanan, Gengshan Yang,
- Abstract summary: We present a method to reconstruct time-consistent human body models from monocular videos.
We focus on extremely loose clothing or handheld object interactions.
DressRecon yields higher-fidelity 3D reconstructions than prior art.
- Score: 64.61230035671885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to reconstruct time-consistent human body models from monocular videos, focusing on extremely loose clothing or handheld object interactions. Prior work in human reconstruction is either limited to tight clothing with no object interactions, or requires calibrated multi-view captures or personalized template scans which are costly to collect at scale. Our key insight for high-quality yet flexible reconstruction is the careful combination of generic human priors about articulated body shape (learned from large-scale training data) with video-specific articulated "bag-of-bones" deformation (fit to a single video via test-time optimization). We accomplish this by learning a neural implicit model that disentangles body versus clothing deformations as separate motion model layers. To capture subtle geometry of clothing, we leverage image-based priors such as human body pose, surface normals, and optical flow during optimization. The resulting neural fields can be extracted into time-consistent meshes, or further optimized as explicit 3D Gaussians for high-fidelity interactive rendering. On datasets with highly challenging clothing deformations and object interactions, DressRecon yields higher-fidelity 3D reconstructions than prior art. Project page: https://jefftan969.github.io/dressrecon/
Related papers
- ReLoo: Reconstructing Humans Dressed in Loose Garments from Monocular Video in the Wild [33.7726643918619]
ReLoo reconstructs high-quality 3D models of humans dressed in loose garments from monocular in-the-wild videos.
We first establish a layered neural human representation that decomposes clothed humans into a neural inner body and outer clothing.
A global optimization jointly optimize the shape, appearance, and deformations of the human body and clothing via multi-layer differentiable volume rendering.
arXiv Detail & Related papers (2024-09-23T17:58:39Z) - MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild [32.6521941706907]
We present MultiPly, a novel framework to reconstruct multiple people in 3D from monocular in-the-wild videos.
We first define a layered neural representation for the entire scene, composited by individual human and background models.
We learn the layered neural representation from videos via our layer-wise differentiable volume rendering.
arXiv Detail & Related papers (2024-06-03T17:59:57Z) - REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
We propose a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints.
Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects.
arXiv Detail & Related papers (2024-04-17T08:01:55Z) - PERGAMO: Personalized 3D Garments from Monocular Video [6.8338761008826445]
PERGAMO is a data-driven approach to learn a deformable model for 3D garments from monocular images.
We first introduce a novel method to reconstruct the 3D geometry of garments from a single image, and use it to build a dataset of clothing from monocular videos.
We show that our method is capable of producing garment animations that match the real-world behaviour, and generalizes to unseen body motions extracted from motion capture dataset.
arXiv Detail & Related papers (2022-10-26T21:15:54Z) - Capturing and Animation of Body and Clothing from Monocular Video [105.87228128022804]
We present SCARF, a hybrid model combining a mesh-based body with a neural radiance field.
integrating the mesh into the rendering enables us to optimize SCARF directly from monocular videos.
We demonstrate that SCARFs clothing with higher visual quality than existing methods, that the clothing deforms with changing body pose and body shape, and that clothing can be successfully transferred between avatars of different subjects.
arXiv Detail & Related papers (2022-10-04T19:34:05Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Neural-GIF: Neural Generalized Implicit Functions for Animating People
in Clothing [49.32522765356914]
We learn to animate people in clothing as a function of the body pose.
We learn to map every point in the space to a canonical space, where a learned deformation field is applied to model non-rigid effects.
Neural-GIF can be trained on raw 3D scans and reconstructs detailed complex surface geometry and deformations.
arXiv Detail & Related papers (2021-08-19T17:25:16Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
We introduce an approach that accurately reconstructs 3D human poses and detailed 3D full-body geometric models from single images in realtime.
Key idea of our approach is a novel end-to-end multi-task deep learning framework that uses single images to predict five outputs simultaneously.
We show the system advances the frontier of 3D human body and pose reconstruction from single images by quantitative evaluations and comparisons with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-22T04:26:11Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.