Frequency Masking for Universal Deepfake Detection
- URL: http://arxiv.org/abs/2401.06506v3
- Date: Wed, 17 Jan 2024 07:44:50 GMT
- Title: Frequency Masking for Universal Deepfake Detection
- Authors: Chandler Timm Doloriel, Ngai-Man Cheung
- Abstract summary: We study universal deepfake detection. Our goal is to detect synthetic images from a range of generative AI approaches.
Motivated by recently proposed masked image modeling, we make the first attempt to explore masked image modeling for universal deepfake detection.
- Score: 25.844830329275613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study universal deepfake detection. Our goal is to detect synthetic images
from a range of generative AI approaches, particularly from emerging ones which
are unseen during training of the deepfake detector. Universal deepfake
detection requires outstanding generalization capability. Motivated by recently
proposed masked image modeling which has demonstrated excellent generalization
in self-supervised pre-training, we make the first attempt to explore masked
image modeling for universal deepfake detection. We study spatial and frequency
domain masking in training deepfake detectors. Based on empirical analysis, we
propose a novel deepfake detector via frequency masking. Our focus on frequency
domain is different from the majority, which primarily target spatial domain
detection. Our comparative analyses reveal substantial performance gains over
existing methods. Code and models are publicly available.
Related papers
- Deepfake Detection without Deepfakes: Generalization via Synthetic Frequency Patterns Injection [12.33030785907372]
Deepfake detectors are typically trained on large sets of pristine and generated images.
Deepfake detectors excel at identifying deepfakes created through methods encountered during training but struggle with those generated by unknown techniques.
This paper introduces a learning approach aimed at significantly enhancing the generalization capabilities of deepfake detectors.
arXiv Detail & Related papers (2024-03-20T10:33:10Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
We present the first empirical study on the generalizability of deepfake detectors.
Our study utilizes six deepfake datasets, five deepfake image detection methods, and two model augmentation approaches.
We find that detectors are learning unwanted properties specific to synthesis methods and struggling to extract discriminative features.
arXiv Detail & Related papers (2023-08-08T10:30:34Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain.
We propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF)
Experiment results on several public face forgery datasets demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T08:58:49Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
The emergence of deepfake technologies has become a matter of social concern as they pose threats to individual privacy and public security.
It is almost impossible to collect sufficient representative fake faces, and it is hard for existing detectors to generalize to all types of manipulation.
We propose Real Face Foundation Representation Learning (RFFR), which aims to learn a general representation from large-scale real face datasets.
arXiv Detail & Related papers (2023-03-15T08:27:56Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Exploring Frequency Adversarial Attacks for Face Forgery Detection [59.10415109589605]
We propose a frequency adversarial attack method against face forgery detectors.
Inspired by the idea of meta-learning, we also propose a hybrid adversarial attack that performs attacks in both the spatial and frequency domains.
arXiv Detail & Related papers (2022-03-29T15:34:13Z) - FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations [12.027711542565315]
We design a framework to generalize the deepfake detector for both the known and unseen GAN models.
Our framework generates the frequency-level perturbation maps to make the generated images indistinguishable from the real images.
For experiments, we design new test scenarios varying from the training settings in GAN models, color manipulations, and object categories.
arXiv Detail & Related papers (2022-02-07T16:45:11Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.