MetaHate: A Dataset for Unifying Efforts on Hate Speech Detection
- URL: http://arxiv.org/abs/2401.06526v1
- Date: Fri, 12 Jan 2024 11:54:53 GMT
- Title: MetaHate: A Dataset for Unifying Efforts on Hate Speech Detection
- Authors: Paloma Piot, Patricia Mart\'in-Rodilla, Javier Parapar
- Abstract summary: Hate speech poses significant social, psychological, and occasionally physical threats to targeted individuals and communities.
Current computational linguistic approaches for tackling this phenomenon rely on labelled social media datasets for training.
We scrutinized over 60 datasets, selectively integrating those pertinent into MetaHate.
Our findings contribute to a deeper understanding of the existing datasets, paving the way for training more robust and adaptable models.
- Score: 2.433983268807517
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hate speech represents a pervasive and detrimental form of online discourse,
often manifested through an array of slurs, from hateful tweets to defamatory
posts. As such speech proliferates, it connects people globally and poses
significant social, psychological, and occasionally physical threats to
targeted individuals and communities. Current computational linguistic
approaches for tackling this phenomenon rely on labelled social media datasets
for training. For unifying efforts, our study advances in the critical need for
a comprehensive meta-collection, advocating for an extensive dataset to help
counteract this problem effectively. We scrutinized over 60 datasets,
selectively integrating those pertinent into MetaHate. This paper offers a
detailed examination of existing collections, highlighting their strengths and
limitations. Our findings contribute to a deeper understanding of the existing
datasets, paving the way for training more robust and adaptable models. These
enhanced models are essential for effectively combating the dynamic and complex
nature of hate speech in the digital realm.
Related papers
- A Target-Aware Analysis of Data Augmentation for Hate Speech Detection [3.858155067958448]
Hate speech is one of the main threats posed by the widespread use of social networks.
We investigate the possibility of augmenting existing data with generative language models, reducing target imbalance.
For some hate categories such as origin, religion, and disability, hate speech classification using augmented data for training improves by more than 10% F1 over the no augmentation baseline.
arXiv Detail & Related papers (2024-10-10T15:46:27Z) - Empirical Evaluation of Public HateSpeech Datasets [0.0]
Social media platforms are widely utilised for generating datasets employed in training and evaluating machine learning algorithms for hate speech detection.
Existing public datasets exhibit numerous limitations, hindering the effective training of these algorithms and leading to inaccurate hate speech classification.
This work aims to advance the development of more accurate and reliable machine learning models for hate speech detection.
arXiv Detail & Related papers (2024-06-27T11:20:52Z) - Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
We propose Pseudo-Word HuBERT (PW-HuBERT), a framework that integrates pseudo word-level targets into the training process.
Our experimental results on four spoken language understanding (SLU) benchmarks suggest the superiority of our model in capturing semantic information.
arXiv Detail & Related papers (2024-02-08T16:55:21Z) - Topological Data Mapping of Online Hate Speech, Misinformation, and
General Mental Health: A Large Language Model Based Study [6.803493330690884]
Recent advances in machine learning and large language models have made such an analysis possible.
In this study, we collected thousands of posts from carefully selected communities on the social media site Reddit.
We performed various machine-learning classifications based on embeddings in order to understand the role of hate speech/misinformation in various communities.
arXiv Detail & Related papers (2023-09-22T15:10:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Trawling for Trolling: A Dataset [56.1778095945542]
We present a dataset that models trolling as a subcategory of offensive content.
The dataset has 12,490 samples, split across 5 classes; Normal, Profanity, Trolling, Derogatory and Hate Speech.
arXiv Detail & Related papers (2020-08-02T17:23:55Z) - Towards Hate Speech Detection at Large via Deep Generative Modeling [4.080068044420974]
Hate speech detection is a critical problem in social media platforms.
We present a dataset of 1 million realistic hate and non-hate sequences, produced by a deep generative language model.
We demonstrate consistent and significant performance improvements across five public hate speech datasets.
arXiv Detail & Related papers (2020-05-13T15:25:59Z) - Transfer Learning for Hate Speech Detection in Social Media [14.759208309842178]
This paper uses a transfer learning technique to leverage two independent datasets jointly.
We build an interpretable two-dimensional visualization tool of the constructed hate speech representation -- dubbed the Map of Hate.
We show that the joint representation boosts prediction performances when only a limited amount of supervision is available.
arXiv Detail & Related papers (2019-06-10T08:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.