Mutual Enhancement of Large Language and Reinforcement Learning Models through Bi-Directional Feedback Mechanisms: A Planning Case Study
- URL: http://arxiv.org/abs/2401.06603v2
- Date: Sun, 02 Mar 2025 01:46:57 GMT
- Title: Mutual Enhancement of Large Language and Reinforcement Learning Models through Bi-Directional Feedback Mechanisms: A Planning Case Study
- Authors: Shangding Gu,
- Abstract summary: We employ a teacher-student learning framework to tackle problems of Large Language Models (LLMs) and reinforcement learning (RL) models.<n>Within this framework, the LLM acts as a teacher, while the RL model acts as a student.<n>We propose a practical algorithm to address the problem and conduct empirical experiments to evaluate the effectiveness of our method.
- Score: 1.3597551064547502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities for reinforcement learning (RL) models, such as planning and reasoning capabilities. However, the problems of LLMs and RL model collaboration still need to be solved. In this study, we employ a teacher-student learning framework to tackle these problems, specifically by offering feedback for LLMs using RL models and providing high-level information for RL models with LLMs in a cooperative multi-agent setting. Within this framework, the LLM acts as a teacher, while the RL model acts as a student. The two agents cooperatively assist each other through a process of recursive help, such as "I help you help I help." The LLM agent supplies abstract information to the RL agent, enabling efficient exploration and policy improvement. In turn, the RL agent offers feedback to the LLM agent, providing valuable, real-time information that helps generate more useful tokens. This bi-directional feedback loop promotes optimization, exploration, and mutual improvement for both agents, enabling them to accomplish increasingly challenging tasks. Remarkably, we propose a practical algorithm to address the problem and conduct empirical experiments to evaluate the effectiveness of our method.
Related papers
- SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.
Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.
We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.
Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Reinforcement Learning Enhanced LLMs: A Survey [45.57586245741664]
We will make a systematic review of the most up-to-date state of knowledge on RL-enhanced large language models (LLMs)
Specifically, we detail the basics of RL; (2) introduce popular RL-enhanced LLMs; (3) review researches on two widely-used reward model-based RL techniques: Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF)
arXiv Detail & Related papers (2024-12-05T16:10:42Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - The RL/LLM Taxonomy Tree: Reviewing Synergies Between Reinforcement
Learning and Large Language Models [2.5721733711031978]
We review research studies that combine Reinforcement Learning (RL) and Large Language Models (LLMs)
We propose a novel taxonomy of three main classes based on the way that the two model types interact with each other.
arXiv Detail & Related papers (2024-02-02T20:01:15Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
We introduce a method to address goal misgeneralization in reinforcement learning (RL)
Goal misgeneralization occurs when an agent retains its capabilities out-of-distribution yet pursues a proxy rather than the intended one.
This study demonstrates how the Large Language Model can efficiently supervise RL agents.
arXiv Detail & Related papers (2024-01-14T01:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.