Accelerating Tactile Internet with QUIC: A Security and Privacy Perspective
- URL: http://arxiv.org/abs/2401.06657v2
- Date: Wed, 31 Jan 2024 16:48:28 GMT
- Title: Accelerating Tactile Internet with QUIC: A Security and Privacy Perspective
- Authors: Jayasree Sengupta, Debasmita Dey, Simone Ferlin, Nirnay Ghosh, Vaibhav Bajpai,
- Abstract summary: We envision a futuristic scenario where a QUIC-enabled network uses the underlying 6G communication infrastructure to achieve the requirements for Tactile Internet.
This article reviews the existing security and privacy attacks in QUIC and their implication on users.
- Score: 3.2738809491666077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Tactile Internet paradigm is set to revolutionize human society by enabling skill-set delivery and haptic communication over ultra-reliable, low-latency networks. The emerging sixth-generation (6G) mobile communication systems are envisioned to underpin this Tactile Internet ecosystem at the network edge by providing ubiquitous global connectivity. However, apart from a multitude of opportunities of the Tactile Internet, security and privacy challenges emerge at the forefront. We believe that the recently standardized QUIC protocol, characterized by end-to-end encryption and reduced round-trip delay would serve as the backbone of Tactile Internet. In this article, we envision a futuristic scenario where a QUIC-enabled network uses the underlying 6G communication infrastructure to achieve the requirements for Tactile Internet. Interestingly this requires a deeper investigation of a wide range of security and privacy challenges in QUIC, that need to be mitigated for its adoption in Tactile Internet. Henceforth, this article reviews the existing security and privacy attacks in QUIC and their implication on users. Followed by that, we discuss state-of-the-art attack mitigation strategies and investigate some of their drawbacks with possible directions for future work
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
The vision for 6G aims to enhance network capabilities with faster data rates, near-zero latency, and higher capacity.
This advancement seeks to enable immersive mixed-reality experiences, holographic communications, and smart city infrastructures.
The expansion of 6G raises critical security and privacy concerns, such as unauthorized access and data breaches.
arXiv Detail & Related papers (2024-10-04T03:03:44Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - Security, Trust and Privacy challenges in AI-driven 6G Networks [2.362412515574206]
This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure.
It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats.
The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
arXiv Detail & Related papers (2024-09-16T14:48:20Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Digital Twin-Empowered Smart Attack Detection System for 6G Edge of Things Networks [2.3464026676834813]
We introduce a digital twin-empowered smart attack detection system for 6G EoT networks.
It monitors and simulates physical assets in real time, enhancing security.
Our system excels in proactive threat detection, ensuring 6G EoT network security.
arXiv Detail & Related papers (2023-10-05T14:06:04Z) - Tactile based Intelligence Touch Technology in IoT configured WCN in
B5G/6G-A Survey [8.604882842499208]
This study proposes an intelligent touch-enabled system for B5G/6G and IoT based wireless communication network that incorporates the AR/VR technologies.
The tactile internet and network slicing serve as the backbone of the touch technology which incorporates intelligence from techniques such as AI/ML/DL.
It is anticipated for the next generation system to provide numerous opportunities for various sectors utilizing AR/VR technology in robotics and healthcare facilities.
arXiv Detail & Related papers (2023-01-11T06:39:07Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - A Detail Study of Security and Privacy issues of Internet of Things [0.7874708385247353]
The Internet of Things refers to the billions of physical objects around the planet that are now connected to the Internet.
The main focus of this chapter is to systematically review the security and privacy of the Internet of Things in the present world.
arXiv Detail & Related papers (2020-09-14T11:58:22Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.