Security, Trust and Privacy challenges in AI-driven 6G Networks
- URL: http://arxiv.org/abs/2409.10337v1
- Date: Mon, 16 Sep 2024 14:48:20 GMT
- Title: Security, Trust and Privacy challenges in AI-driven 6G Networks
- Authors: Helena Rifa-Pous, Victor Garcia-Font, Carlos Nunez-Gomez, Julian Salas,
- Abstract summary: This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure.
It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats.
The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
- Score: 2.362412515574206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of 6G networks promises unprecedented advancements in wireless communication, offering wider bandwidth and lower latency compared to its predecessors. This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure and the integration of artificial intelligence (AI) technologies. Furthermore, it explores the security, trust and privacy challenges and attacks in 6G networks, particularly those related to the use of AI. It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats. The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
Related papers
- An Approach To Enhance IoT Security In 6G Networks Through Explainable AI [1.9950682531209158]
6G communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT.
The integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies.
Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance.
arXiv Detail & Related papers (2024-10-04T20:14:25Z) - From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
The vision for 6G aims to enhance network capabilities with faster data rates, near-zero latency, and higher capacity.
This advancement seeks to enable immersive mixed-reality experiences, holographic communications, and smart city infrastructures.
The expansion of 6G raises critical security and privacy concerns, such as unauthorized access and data breaches.
arXiv Detail & Related papers (2024-10-04T03:03:44Z) - Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
We present the first security assessment of the 5G core from a web security perspective.
We use the STRIDE threat modeling approach to define a complete list of possible threat vectors and associated attacks.
Our analysis shows that all these cores are vulnerable to at least two of our identified attack vectors.
arXiv Detail & Related papers (2024-03-04T09:27:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Edge AI Empowered Physical Layer Security for 6G NTN: Potential Threats and Future Opportunities [33.36351274737824]
This paper provides an overview of the possible risks that the physical layer may encounter in the context of 6G Non-Terrestrial Networks (NTN)
With the objective of showcasing the effectiveness of cutting-edge AI technologies in bolstering physical layer security, this study reviews the most foreseeable design strategies associated with edge AI in the realm of 6G.
The findings of this paper serve as a foundation for future investigations aimed at enhancing the physical layer security of edge servers/devices in the next generation of trustworthy 6G telecommunication networks.
arXiv Detail & Related papers (2023-10-03T07:06:57Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - AI Empowered Net-RCA for 6G [12.368396458140326]
6G is envisioned to offer higher data rate, improved reliability, ubiquitous AI services, and support massive scale of connected devices.
6G will be much more complex than its predecessors.
The growth of the system scale and complexity as well as the coexistence with the legacy networks and the diversified service requirements will inevitably incur huge maintenance cost and efforts for future 6G networks.
arXiv Detail & Related papers (2022-12-01T07:38:32Z) - Transformer-Empowered 6G Intelligent Networks: From Massive MIMO
Processing to Semantic Communication [71.21459460829409]
We introduce an emerging deep learning architecture, known as the transformer, and discuss its potential impact on 6G network design.
Specifically, we propose transformer-based solutions for massive multiple-input multiple-output (MIMO) systems and various semantic communication problems in 6G networks.
arXiv Detail & Related papers (2022-05-08T03:22:20Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
This paper examines the security implications of AI-driven 6G radio access networks (RANs)
The Open RAN (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with AI control.
arXiv Detail & Related papers (2021-06-01T16:36:37Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.