A Closed-form Solution for Weight Optimization in Fully-connected Feed-forward Neural Networks
- URL: http://arxiv.org/abs/2401.06699v2
- Date: Mon, 17 Jun 2024 07:16:27 GMT
- Title: A Closed-form Solution for Weight Optimization in Fully-connected Feed-forward Neural Networks
- Authors: Slavisa Tomic, João Pedro Matos-Carvalho, Marko Beko,
- Abstract summary: This work addresses weight optimization problem for fully-connected feed-forward neural networks.
The proposed approach offers the solution for weight optimization in closed-form by means of least squares (LS) methodology.
Our simulation and empirical results show that the proposed scheme, BPLS, works well and is competitive with existing ones in terms of accuracy, but significantly surpasses them in terms of running time.
- Score: 2.1301560294088318
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work addresses weight optimization problem for fully-connected feed-forward neural networks. Unlike existing approaches that are based on back-propagation (BP) and chain rule gradient-based optimization (which implies iterative execution, potentially burdensome and time-consuming in some cases), the proposed approach offers the solution for weight optimization in closed-form by means of least squares (LS) methodology. In the case where the input-to-output mapping is injective, the new approach optimizes the weights in a back-propagating fashion in a single iteration by jointly optimizing a set of weights in each layer for each neuron. In the case where the input-to-output mapping is not injective (e.g., in classification problems), the proposed solution is easily adapted to obtain its final solution in a few iterations. An important advantage over the existing solutions is that these computations (for all neurons in a layer) are independent from each other; thus, they can be carried out in parallel to optimize all weights in a given layer simultaneously. Furthermore, its running time is deterministic in the sense that one can obtain the exact number of computations necessary to optimize the weights in all network layers (per iteration, in the case of non-injective mapping). Our simulation and empirical results show that the proposed scheme, BPLS, works well and is competitive with existing ones in terms of accuracy, but significantly surpasses them in terms of running time. To summarize, the new method is straightforward to implement, is competitive and computationally more efficient than the existing ones, and is well-tailored for parallel implementation.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Reducing the Need for Backpropagation and Discovering Better Optima With
Explicit Optimizations of Neural Networks [4.807347156077897]
We propose a computationally efficient alternative for optimizing neural networks.
We derive an explicit solution to a simple feed-forward language model.
We show that explicit solutions perform near-optimality in experiments.
arXiv Detail & Related papers (2023-11-13T17:38:07Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
arXiv Detail & Related papers (2022-11-07T18:13:44Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Implementation of Parallel Simplified Swarm Optimization in CUDA [2.322689362836168]
In optimization computing, intelligent swarm algorithms (SIAs) method is suitable for parallelization.
This paper proposed a GPU-based Simplified Swarm Algorithm Optimization (PSSO) based on the platform considering computational ability and versatility.
As the results showed, the time complexity has successfully reduced by an order of magnitude of N, and the problem of resource preemption was avoided entirely.
arXiv Detail & Related papers (2021-10-01T00:15:45Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.