Always-Sparse Training by Growing Connections with Guided Stochastic
Exploration
- URL: http://arxiv.org/abs/2401.06898v1
- Date: Fri, 12 Jan 2024 21:32:04 GMT
- Title: Always-Sparse Training by Growing Connections with Guided Stochastic
Exploration
- Authors: Mike Heddes, Narayan Srinivasa, Tony Givargis, Alexandru Nicolau
- Abstract summary: We propose an efficient always-sparse training algorithm with excellent scaling to larger and sparser models.
We evaluate our method on CIFAR-10/100 and ImageNet using VGG, and ViT models, and compare it against a range of sparsification methods.
- Score: 46.4179239171213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The excessive computational requirements of modern artificial neural networks
(ANNs) are posing limitations on the machines that can run them. Sparsification
of ANNs is often motivated by time, memory and energy savings only during model
inference, yielding no benefits during training. A growing body of work is now
focusing on providing the benefits of model sparsification also during
training. While these methods greatly improve the training efficiency, the
training algorithms yielding the most accurate models still materialize the
dense weights, or compute dense gradients during training. We propose an
efficient, always-sparse training algorithm with excellent scaling to larger
and sparser models, supported by its linear time complexity with respect to the
model width during training and inference. Moreover, our guided stochastic
exploration algorithm improves over the accuracy of previous sparse training
methods. We evaluate our method on CIFAR-10/100 and ImageNet using ResNet, VGG,
and ViT models, and compare it against a range of sparsification methods.
Related papers
- Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations [62.132347451049455]
Scale has become a main ingredient in obtaining strong machine learning models.
In this work, we argue that scale and training research has been needlessly complex due to reliance on the cosine schedule.
We show that weight averaging yields improved performance along the training trajectory, without additional training costs, across different scales.
arXiv Detail & Related papers (2024-05-28T17:33:54Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
We show the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks.
We provide new approaches for mitigating this issue for both sparse pre-training of vision models and sparse fine-tuning of language models.
arXiv Detail & Related papers (2023-08-03T21:49:14Z) - Balanced Training for Sparse GANs [16.045866864231417]
We propose a novel metric called the balance ratio (BR) to study the balance between the sparse generator and discriminator.
We also introduce a new method called balanced dynamic sparse training (ADAPT), which seeks to control the BR during GAN training to achieve a good trade-off between performance and computational cost.
arXiv Detail & Related papers (2023-02-28T15:34:01Z) - Effective and Efficient Training for Sequential Recommendation using
Recency Sampling [91.02268704681124]
We propose a novel Recency-based Sampling of Sequences training objective.
We show that the models enhanced with our method can achieve performances exceeding or very close to stateof-the-art BERT4Rec.
arXiv Detail & Related papers (2022-07-06T13:06:31Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
We study approaches to improve the training efficiency and robustness of deep learning models.
We find that prioritizing learning on more informative training data increases convergence speed and improves generalization performance on test data.
We show that a redundancy-aware modification to the sampling of training data improves the training speed and develops an efficient method for detecting the diversity of training signal.
arXiv Detail & Related papers (2021-12-02T17:11:33Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training [0.5219568203653523]
We develop a sparse DNN training accelerator that produces pruned models with the same accuracy as dense models without first training, then pruning, and finally retraining, a dense model.
Compared to training the equivalent unpruned models using a state-of-the-art DNN accelerator without sparse training support, Procrustes consumes up to 3.26$times$ less energy and offers up to 4$times$ speedup across a range of models, while pruning weights by an order of magnitude and maintaining unpruned accuracy.
arXiv Detail & Related papers (2020-09-23T07:39:55Z) - A Practical Incremental Method to Train Deep CTR Models [37.54660958085938]
We introduce a practical incremental method to train deep CTR models, which consists of three decoupled modules.
Our method can achieve comparable performance to the conventional batch mode training with much better training efficiency.
arXiv Detail & Related papers (2020-09-04T12:35:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.