An Efficient Training Algorithm for Models with Block-wise Sparsity
- URL: http://arxiv.org/abs/2503.21928v1
- Date: Thu, 27 Mar 2025 19:14:27 GMT
- Title: An Efficient Training Algorithm for Models with Block-wise Sparsity
- Authors: Ding Zhu, Zhiqun Zuo, Mohammad Mahdi Khalili,
- Abstract summary: We propose an efficient training algorithm to decrease both computation and memory costs during training and inference.<n>Our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines.
- Score: 6.882042556551613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with \textit{block-wise sparse matrices} and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines.
Related papers
- Optimizing ML Training with Metagradient Descent [69.89631748402377]
We introduce an algorithm for efficiently calculating metagradients -- gradients through model training -- at scale.
We then introduce a "smooth model training" framework that enables effective optimization using metagradients.
arXiv Detail & Related papers (2025-03-17T22:18:24Z) - AutoHete: An Automatic and Efficient Heterogeneous Training System for LLMs [68.99086112477565]
Transformer-based large language models (LLMs) have demonstrated exceptional capabilities in sequence modeling and text generation.<n>Existing heterogeneous training methods significantly expand the scale of trainable models but introduce substantial communication overheads and CPU workloads.<n>We propose AutoHete, an automatic and efficient heterogeneous training system compatible with both single- GPU and multi- GPU environments.
arXiv Detail & Related papers (2025-02-27T14:46:22Z) - Scaling Laws for Upcycling Mixture-of-Experts Language Models [17.796361238003403]
Pretraining large language models (LLMs) is resource-intensive, often requiring months of training time even with high-end GPU clusters.<n>There are two approaches of mitigating such computational demands: reusing smaller models to train larger ones (upcycling) and training computationally efficient models like mixture-of-experts (MoE)
arXiv Detail & Related papers (2025-02-05T09:11:13Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
This paper focuses on compressing decoder-only transformer-based autoregressive models through structural weight pruning.
Specifically, we propose a training-free pruning method that calculates a numerical score with Newton's method for the Attention and modules, respectively.
To verify the effectiveness of our method, we provide both theoretical support and extensive experiments.
arXiv Detail & Related papers (2024-12-17T01:09:23Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Always-Sparse Training by Growing Connections with Guided Stochastic
Exploration [46.4179239171213]
We propose an efficient always-sparse training algorithm with excellent scaling to larger and sparser models.
We evaluate our method on CIFAR-10/100 and ImageNet using VGG, and ViT models, and compare it against a range of sparsification methods.
arXiv Detail & Related papers (2024-01-12T21:32:04Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Performance and Energy Consumption of Parallel Machine Learning
Algorithms [0.0]
Machine learning models have achieved remarkable success in various real-world applications.
Model training in machine learning requires large-scale data sets and multiple iterations before it can work properly.
Parallelization of training algorithms is a common strategy to speed up the process of training.
arXiv Detail & Related papers (2023-05-01T13:04:39Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Block-wise Dynamic Sparseness [20.801638768447948]
We present a new method for emphdynamic sparseness, whereby part of the computations are omitted dynamically, based on the input.
Our method achieves similar language modeling perplexities as the dense baseline, at half the computational cost at inference time.
arXiv Detail & Related papers (2020-01-14T10:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.