Open RAN LSTM Traffic Prediction and Slice Management using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2401.06922v1
- Date: Fri, 12 Jan 2024 22:43:07 GMT
- Title: Open RAN LSTM Traffic Prediction and Slice Management using Deep
Reinforcement Learning
- Authors: Fatemeh Lotfi, Fatemeh Afghah
- Abstract summary: This paper introduces a novel approach to ORAN slicing using distributed deep reinforcement learning (DDRL)
Simulation results demonstrate significant improvements in network performance, particularly in reducing violations.
This emphasizes the importance of using the prediction rApp and distributed actors' information jointly as part of a dynamic xApp.
- Score: 7.473473066047965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With emerging applications such as autonomous driving, smart cities, and
smart factories, network slicing has become an essential component of 5G and
beyond networks as a means of catering to a service-aware network. However,
managing different network slices while maintaining quality of services (QoS)
is a challenge in a dynamic environment. To address this issue, this paper
leverages the heterogeneous experiences of distributed units (DUs) in ORAN
systems and introduces a novel approach to ORAN slicing xApp using distributed
deep reinforcement learning (DDRL). Additionally, to enhance the
decision-making performance of the RL agent, a prediction rApp based on long
short-term memory (LSTM) is incorporated to provide additional information from
the dynamic environment to the xApp. Simulation results demonstrate significant
improvements in network performance, particularly in reducing QoS violations.
This emphasizes the importance of using the prediction rApp and distributed
actors' information jointly as part of a dynamic xApp.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
This paper introduces an innovative attention-based deep RL (ADRL) technique that leverages the O-RAN disaggregated modules and distributed agent cooperation.
Simulation results demonstrate significant improvements in network performance compared to other DRL baseline methods.
arXiv Detail & Related papers (2023-06-15T20:37:19Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Reinforcement Learning Based Resource Allocation for Network Slices in
O-RAN Midhaul [4.254099382808598]
Network slicing envisions the 5th generation (5G) mobile network resource allocation to be based on different requirements for different services, such as Ultra-Reliable Low Communication (URLLC) and Enhanced Mobile Broadband (eMBB)
This research demonstrates an RL compatible simplified edge network simulator with three components, user equipment(UE), Edge O-Cloud, and Regional O-Cloud.
This simulator is later used to discover how to improve throughput for targeted network slice(s) by dynamically allocating unused bandwidth from other slices.
arXiv Detail & Related papers (2022-11-14T15:48:13Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
Network slicing is proposed as a promising solution for resource utilization in 5G and future networks.
We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures.
We propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm.
arXiv Detail & Related papers (2021-11-16T11:54:09Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Self-play Learning Strategies for Resource Assignment in Open-RAN
Networks [3.763743638851161]
Open Radio Access Network (ORAN) is being developed with an aim to democratise access and lower the cost of future mobile data networks.
In ORAN, network functionality is dis-aggregated into remote units (RUs), distributed units (DUs) and central units (CUs)
arXiv Detail & Related papers (2021-03-03T19:31:29Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.