CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing
- URL: http://arxiv.org/abs/2111.08397v1
- Date: Tue, 16 Nov 2021 11:54:09 GMT
- Title: CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing
- Authors: Yongshuai Liu, Jiaxin Ding, Zhi-Li Zhang, Xin Liu
- Abstract summary: Network slicing is proposed as a promising solution for resource utilization in 5G and future networks.
We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures.
We propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm.
- Score: 19.990451009223573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As mobile networks proliferate, we are experiencing a strong diversification
of services, which requires greater flexibility from the existing network.
Network slicing is proposed as a promising solution for resource utilization in
5G and future networks to address this dire need. In network slicing, dynamic
resource orchestration and network slice management are crucial for maximizing
resource utilization. Unfortunately, this process is too complex for
traditional approaches to be effective due to a lack of accurate models and
dynamic hidden structures. We formulate the problem as a Constrained Markov
Decision Process (CMDP) without knowing models and hidden structures.
Additionally, we propose to solve the problem using CLARA, a Constrained
reinforcement LeArning based Resource Allocation algorithm. In particular, we
analyze cumulative and instantaneous constraints using adaptive interior-point
policy optimization and projection layer, respectively. Evaluations show that
CLARA clearly outperforms baselines in resource allocation with service demand
guarantees.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Fast and Scalable Network Slicing by Integrating Deep Learning with
Lagrangian Methods [8.72339110741777]
Network slicing is a key technique in 5G and beyond for efficiently supporting diverse services.
Deep learning models suffer limited generalization and adaptability to dynamic slicing configurations.
We propose a novel framework that integrates constrained optimization methods and deep learning models.
arXiv Detail & Related papers (2024-01-22T07:19:16Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
This paper introduces an innovative attention-based deep RL (ADRL) technique that leverages the O-RAN disaggregated modules and distributed agent cooperation.
Simulation results demonstrate significant improvements in network performance compared to other DRL baseline methods.
arXiv Detail & Related papers (2023-06-15T20:37:19Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNet is a reinforcement learning framework to discover resilient network topologies against various disasters and attacks.
We show that ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.
arXiv Detail & Related papers (2021-10-18T06:14:28Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
We investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements.
A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource.
We show that the RAWS effectively reduces the system cost while satisfying requirements with a high probability, as compared with benchmarks.
arXiv Detail & Related papers (2020-12-03T15:08:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.