論文の概要: Towards Effective Image Forensics via A Novel Computationally Efficient
Framework and A New Image Splice Dataset
- arxiv url: http://arxiv.org/abs/2401.06998v1
- Date: Sat, 13 Jan 2024 06:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:19:51.545879
- Title: Towards Effective Image Forensics via A Novel Computationally Efficient
Framework and A New Image Splice Dataset
- Title(参考訳): 計算効率の良い新しいフレームワークと新しい画像スプライスデータセットによる画像鑑定の効率化に向けて
- Authors: Ankit Yadav, Dinesh Kumar Vishwakarma
- Abstract要約: この写本はスプライス検出に2倍の貢献をしている。
2つのバリエーションには、コードから生成されたスプリシングされたサンプルと、手作業による編集が含まれている。
最小計算コストで正確なスプライス検出を行うために,新しいスポース圧縮軽量スプライス検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.30075248247771
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Splice detection models are the need of the hour since splice manipulations
can be used to mislead, spread rumors and create disharmony in society.
However, there is a severe lack of image splicing datasets, which restricts the
capabilities of deep learning models to extract discriminative features without
overfitting. This manuscript presents two-fold contributions toward splice
detection. Firstly, a novel splice detection dataset is proposed having two
variants. The two variants include spliced samples generated from code and
through manual editing. Spliced images in both variants have corresponding
binary masks to aid localization approaches. Secondly, a novel
Spatio-Compression Lightweight Splice Detection Framework is proposed for
accurate splice detection with minimum computational cost. The proposed
dual-branch framework extracts discriminative spatial features from a
lightweight spatial branch. It uses original resolution compression data to
extract double compression artifacts from the second branch, thereby making it
'information preserving.' Several CNNs are tested in combination with the
proposed framework on a composite dataset of images from the proposed dataset
and the CASIA v2.0 dataset. The best model accuracy of 0.9382 is achieved and
compared with similar state-of-the-art methods, demonstrating the superiority
of the proposed framework.
- Abstract(参考訳): スプライス検出モデルは、スプライス操作を誤解し、噂を広め、社会に不和をもたらすために使用できるため、時間を必要とする。
しかし、画像スプライシングデータセットがひどく欠如しており、ディープラーニングモデルが過剰に適合することなく識別的特徴を抽出する能力が制限されている。
本書はスプライス検出への2つの貢献を示す。
まず、2つの変種を持つ新しいスプリス検出データセットを提案する。
2つのバリエーションには、コードから生成されたスプライシングサンプルと手動編集が含まれる。
両方の変種におけるスプリケート画像は、ローカライゼーションアプローチを支援するために対応するバイナリマスクを持つ。
次に, 計算コストを最小とした高精度スプライス検出のための新しい空間圧縮軽量スプライス検出フレームワークを提案する。
提案手法は,軽量な空間枝から識別的空間特徴を抽出する。
オリジナルの解像度圧縮データを用いて第2分枝から二重圧縮アーティファクトを抽出し、「情報保存」する。
いくつかのcnnは、提案されたデータセットとcasia v2.0データセットからのイメージの複合データセットで提案されたフレームワークと組み合わせてテストされる。
最良モデルの精度は 0.9382 で、同様の最先端の手法と比較され、提案されたフレームワークの優位性を示している。
関連論文リスト
- Efficient Segmentation with Texture in Ore Images Based on
Box-supervised Approach [6.6773975364173]
完全な鉱石と独立した鉱石を識別するために, テクスチャを特徴とするボックス管理手法を提案する。
提案手法は,21.6MBの小型モデルサイズで毎秒50フレーム以上を実現する。
この手法は、鉱石画像データセットの最先端アプローチと比較して高い精度を維持している。
論文 参考訳(メタデータ) (2023-11-10T08:28:22Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - SceneComposer: Any-Level Semantic Image Synthesis [80.55876413285587]
任意の精度のセマンティックレイアウトから条件付き画像合成のための新しいフレームワークを提案する。
このフレームワークは、形状情報のない最低レベルのテキスト・トゥ・イメージ(T2I)に自然に還元され、最高レベルのセグメンテーション・トゥ・イメージ(S2I)となる。
本稿では,この新たなセットアップの課題に対処する,新しいテクニックをいくつか紹介する。
論文 参考訳(メタデータ) (2022-11-21T18:59:05Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - Summarize and Search: Learning Consensus-aware Dynamic Convolution for
Co-Saliency Detection [139.10628924049476]
人間は、まず、グループ全体のコンセンサス知識を要約し、その後、各画像内の対応するオブジェクトを検索することで、共相検出を行う。
以前の方法は、通常、最初のプロセスで堅牢性、スケーラビリティ、安定性を欠き、第2のプロセスでイメージ機能とコンセンサス機能を融合させる。
本稿では,新たなコンセンサスを考慮した動的畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-01T12:06:42Z) - Y-GAN: Learning Dual Data Representations for Efficient Anomaly
Detection [0.0]
本稿では,Y-GANと呼ばれる新しい再構成モデルを提案する。
モデルはY字型のオートエンコーダで構成され、2つの別々の潜在空間の画像を表現している。
論文 参考訳(メタデータ) (2021-09-28T20:17:04Z) - Unsupervised Change Detection in Hyperspectral Images using Feature
Fusion Deep Convolutional Autoencoders [15.978029004247617]
本研究の目的は,機能融合深部畳み込みオートエンコーダを用いた特徴抽出システムの構築である。
提案手法は,全データセットの教師なし変更検出において,工法の状態よりも明らかに優れていた。
論文 参考訳(メタデータ) (2021-09-10T16:52:31Z) - Benchmarking Scientific Image Forgery Detectors [18.225190509954874]
本稿では,研究コミュニティが報告した最も一般的な画像偽造操作を再現する,拡張可能なオープンソースライブラリを提案する。
我々は、富裕層を有する大規模な科学的偽画像ベンチマーク(39,423画像)を作成する。
さらに,画像重複による抽出論文の多さを考慮し,提案したデータセットにおける最先端のコピー・モーブ検出手法の評価を行った。
論文 参考訳(メタデータ) (2021-05-26T22:58:20Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
本稿では,エンド・ツー・エンドのハイブリッド型オブジェクト検出システムであるEHSODについて述べる。
完全なアノテートと弱いアノテートの両方で、ワンショットでトレーニングすることができる。
完全なアノテートされたデータの30%しか持たない複数のオブジェクト検出ベンチマークで、同等の結果が得られる。
論文 参考訳(メタデータ) (2020-02-18T08:04:58Z) - A Novel Inspection System For Variable Data Printing Using Deep Learning [0.9176056742068814]
超低偽アラームレート(0.005%)で可変データプリント(VDP)を検査するための新しい手法を提案する。
このシステムは、参照画像と低コストスキャナーによってキャプチャされた画像の2つの画像の比較に基づいている。
論文 参考訳(メタデータ) (2020-01-13T15:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。