Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections
- URL: http://arxiv.org/abs/2401.07206v1
- Date: Sun, 14 Jan 2024 05:38:10 GMT
- Title: Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections
- Authors: Yanfang Mo and S. Joe Qin
- Abstract summary: We propose a reduced-dimensional vector autoregressive model to extract low-dimensional dynamics from noisy data.
An optimal oblique decomposition is derived for the best predictability regarding prediction error covariance.
The superior performance and efficiency of the proposed approach are demonstrated using data sets from a synthesized Lorenz system and an industrial process from Eastman Chemical.
- Score: 0.7614628596146602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a probabilistic reduced-dimensional vector
autoregressive (PredVAR) model to extract low-dimensional dynamics from
high-dimensional noisy data. The model utilizes an oblique projection to
partition the measurement space into a subspace that accommodates the
reduced-dimensional dynamics and a complementary static subspace. An optimal
oblique decomposition is derived for the best predictability regarding
prediction error covariance. Building on this, we develop an iterative PredVAR
algorithm using maximum likelihood and the expectation-maximization (EM)
framework. This algorithm alternately updates the estimates of the latent
dynamics and optimal oblique projection, yielding dynamic latent variables with
rank-ordered predictability and an explicit latent VAR model that is consistent
with the outer projection model. The superior performance and efficiency of the
proposed approach are demonstrated using data sets from a synthesized Lorenz
system and an industrial process from Eastman Chemical.
Related papers
- Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
Inverse modeling is limited for ill-posed, high-dimensional applications due to computational costs and poor prediction accuracy with sparse datasets.
We combine Wasserstein Geneversarative Adrial Network with Gradient Penalty (WGAN-GP) and Ensemble Smoother with Multiple Data Assimilation (ES-MDA)
WGAN-GP is trained to generate high-dimensional K fields from a low-dimensional latent space and ES-MDA updates the latent variables by assimilating available measurements.
arXiv Detail & Related papers (2023-10-02T01:27:10Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the
spread of COVID-19 [0.0]
We propose the novel use of a generative adversarial network (GAN) to make predictions in time (PredGAN) and to assimilate measurements (DA-PredGAN)
GANs have received much attention recently, after achieving excellent results for their generation of realistic-looking images.
arXiv Detail & Related papers (2021-05-17T10:56:53Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z) - High-Dimensional Differentially-Private EM Algorithm: Methods and
Near-Optimal Statistical Guarantees [8.089708900273804]
We develop a general framework to design differentially private expectation-maximization (EM) algorithms in high-dimensional latent variable models.
In each model, we establish the near-optimal rate of convergence with differential privacy constraints.
We propose a near rate-optimal EM algorithm with differential privacy guarantees in this setting.
arXiv Detail & Related papers (2021-04-01T04:08:34Z) - Additive Poisson Process: Learning Intensity of Higher-Order Interaction
in Stochastic Processes [10.439638982101181]
We present the Additive Poisson Process (APP), a novel framework that can model the higher-order interaction effects of the intensity functions in processes using lower dimensional projections.
Our model combines the techniques in information geometry to model higher-order interactions on a statistical manifold and in generalized additive models to use lower-dimensional projections to overcome the effects from the curse of dimensionality.
arXiv Detail & Related papers (2020-06-16T08:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.