論文の概要: Stabilizing Sharpness-aware Minimization Through A Simple
Renormalization Strategy
- arxiv url: http://arxiv.org/abs/2401.07250v1
- Date: Sun, 14 Jan 2024 10:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 19:08:48.371467
- Title: Stabilizing Sharpness-aware Minimization Through A Simple
Renormalization Strategy
- Title(参考訳): 単純再正規化戦略によるシャープネス認識最小化の安定化
- Authors: Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, Yunda Hao
- Abstract要約: シャープネス・アウェア(SAM)を用いたニューラルネットワークのトレーニングは非常に不安定である。
そこで我々は、StableSAMと呼ばれる単純な再正規化戦略を提案し、従順勾配のノルムが正確な勾配のノルムを維持する。
本稿は,StableSAMが学習率のこの仕組みをどのように拡張し,SAMを微調整で一貫した性能を実現できるかを示す。
- 参考スコア(独自算出の注目度): 12.927965934262847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, sharpness-aware minimization (SAM) has attracted a lot of attention
because of its surprising effectiveness in improving generalization
performance.However, training neural networks with SAM can be highly unstable
since the loss does not decrease along the direction of the exact gradient at
the current point, but instead follows the direction of a surrogate gradient
evaluated at another point nearby. To address this issue, we propose a simple
renormalization strategy, dubbed StableSAM, so that the norm of the surrogate
gradient maintains the same as that of the exact gradient. Our strategy is easy
to implement and flexible enough to integrate with SAM and its variants, almost
at no computational cost. With elementary tools from convex optimization and
learning theory, we also conduct a theoretical analysis of sharpness-aware
training, revealing that compared to stochastic gradient descent (SGD), the
effectiveness of SAM is only assured in a limited regime of learning rate. In
contrast, we show how StableSAM extends this regime of learning rate and when
it can consistently perform better than SAM with minor modification. Finally,
we demonstrate the improved performance of StableSAM on several representative
data sets and tasks.
- Abstract(参考訳): 近年、一般化性能の向上に驚くべき効果があるため、シャープネス認識最小化(SAM)が注目されているが、現在の点における正確な勾配の方向に沿って損失が減少せず、近くの別の点で評価された代理勾配の方向に従っているため、SAMを用いたニューラルネットワークのトレーニングは非常に不安定である。
この問題に対処するため,我々は,サロゲート勾配のノルムが正確な勾配のノルムと同じ状態を維持するように,stablesamと呼ばれる単純な再正規化戦略を提案する。
我々の戦略は実装が簡単で、samとその派生製品と統合できるほど柔軟で、ほとんど計算コストがかからない。
また,凸最適化と学習理論の基本的なツールを用いてシャープネス認識訓練の理論解析を行い,確率的勾配降下(sgd)と比較して,samの有効性は限られた学習率でのみ保証されることを明らかにした。
対照的に、StableSAMは学習率のこの仕組みを拡張し、小さな修正でSAMよりも一貫して性能を向上できるかを示す。
最後に,いくつかの代表的なデータセットとタスクにおけるstablesamの性能向上を示す。
関連論文リスト
- Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
シャープネス認識最小化(AUSAM)を加速する漸近的アンバイアスサンプリングを提案する。
AUSAMはモデルの一般化能力を維持しながら、計算効率を大幅に向上させる。
プラグアンドプレイでアーキテクチャに依存しない手法として、我々のアプローチはSAMを様々なタスクやネットワークで継続的に加速させる。
論文 参考訳(メタデータ) (2024-06-12T08:47:44Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
ディープニューラルネットワークは、複雑で非構造的なロスランドスケープのため、しばしば一般化の貧弱さに悩まされる。
SharpnessAware Minimization (SAM) は、摂動を加える際の景観の変化を最小限に抑えることで損失を平滑化するポピュラーなソリューションである。
本稿では,二元マスクによる摂動を効果的かつ効果的に行う訓練手法であるスパースSAMを提案する。
論文 参考訳(メタデータ) (2023-06-30T09:33:41Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
シャープネス・アウェアの最小化手法は、フラットな最小化に向けて勾配降下法を操る基本損失関数を変更する。
我々は最近開発されたフラットネス解析のためのよく研究された一般的なフレームワークを拡張し、SAMがSGDよりもフラットなミニマを達成し、mSAMがSAMよりもフラットなミニマを達成できることを理論的に示す。
論文 参考訳(メタデータ) (2023-02-19T23:27:12Z) - SAM operates far from home: eigenvalue regularization as a dynamical
phenomenon [15.332235979022036]
シャープネス認識最小化(SAM)アルゴリズムは、ロス・ヘッセンの大きな固有値を制御することが示されている。
SAMは学習軌跡全体を通して固有値の強い正規化を提供することを示す。
本理論は,学習速度とSAM半径パラメータの関数として最大固有値を予測する。
論文 参考訳(メタデータ) (2023-02-17T04:51:20Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation
Approach [132.37966970098645]
人気のソリューションの1つがSAM(Sharpness-Aware Minimization)であり、摂動を加える際の体重減少の変化を最小限に抑える。
本稿では,Sparse SAM (SSAM) とよばれる効率的な学習手法を提案する。
さらに、S が同じSAM、すなわち $O(log T/sqrtTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT で収束できることを理論的に証明する。
論文 参考訳(メタデータ) (2022-10-11T06:30:10Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
内部勾配の上昇を周期的に計算する新しいアルゴリズム LookSAM を提案する。
LookSAMはSAMと同じような精度を実現し、非常に高速である。
Vision Transformer(ViTs)のトレーニングでバッチサイズのスケールアップに成功したのは,私たちが初めてです。
論文 参考訳(メタデータ) (2022-03-05T11:53:37Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。