Quantum information processing with superconducting circuits: realizing
and characterizing quantum gates and algorithms in open quantum systems
- URL: http://arxiv.org/abs/2401.07302v1
- Date: Sun, 14 Jan 2024 14:31:17 GMT
- Title: Quantum information processing with superconducting circuits: realizing
and characterizing quantum gates and algorithms in open quantum systems
- Authors: Hamid Sakhouf
- Abstract summary: This thesis focuses on quantum information processing using the superconducting device.
For the realization of quantum gates and algorithms, a one-step approach is used.
We suggest faster and more efficient schemes for realizing $X$-rotation and entangling gates for two and three qubits.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This thesis focuses on quantum information processing using the
superconducting device, especially, on realizing quantum gates and algorithms
in open quantum systems. Such a device is constructed by transmon-type
superconducting qubits coupled to a superconducting resonator. For the
realization of quantum gates and algorithms, a one-step approach is used. We
suggest faster and more efficient schemes for realizing $X$-rotation and
entangling gates for two and three qubits. During these operations, the
resonator photon number is canceled owing to the strong microwave field added.
They do not require the resonator to be initially prepared in the vacuum state
and the scheme is insensitive to resonator decay. Furthermore, the robustness
of these operations is demonstrated by including the effect of the decoherence
of transmon systems and the resonator decay in a master equation, and as a
result, high fidelity will be achieved in quantum simulation. In addition,
using the implemented x-rotation gates as well as the phase gates, we present
an alternative way for implementing Grover's algorithm for two and three
qubits, which does not require a series of single gates. As well, we also
demonstrate by a numerical simulation the use of quantum process tomography to
fully characterize the performance of a single-shot entangling gate for two and
three qubits and obtain process fidelities greater than 0.93. These gates are
used to create Bell and Greenberger-Horne-Zeilinger (GHZ) entangled states.
Related papers
- Variational quantum compiling for three-qubit gates design in quantum dots [3.1334925219615797]
We design efficient three-qubit gates using a time-independent Hamiltonian composed of only physical interaction terms.
The resulting gates, including the Toffoli and Fredkin gates, demonstrate high fidelity and robustness against both coherent and incoherent noise sources.
arXiv Detail & Related papers (2024-12-09T07:49:54Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Universal quantum computation using atoms in cross-cavity systems [0.0]
We theoretically investigate a single-step implementation of both a universal two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup.
Within a high-cooper regime, the system exhibits an atomic-state-dependent $pi$-phase gate involving the two-mode single-photon bright and dark states.
arXiv Detail & Related papers (2023-08-28T20:09:54Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Experimental Realization of Two Qutrits Gate with Tunable Coupling in
Superconducting Circuits [11.881366909450376]
Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits.
One of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge.
We propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits.
arXiv Detail & Related papers (2022-06-22T16:33:58Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z) - Implementation of geometric quantum gates on microwave-driven
semiconductor charge qubits [9.88147281393944]
A semiconductor-based charge qubit, confined in double quantum dots, can be a platform to implement quantum computing.
We provide a theoretical framework to implement universal geometric quantum gates in this system.
arXiv Detail & Related papers (2020-04-01T03:21:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.