Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
- URL: http://arxiv.org/abs/2401.07324v3
- Date: Fri, 16 Feb 2024 12:42:25 GMT
- Title: Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
- Authors: Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan,
Hehong Chen, Ji Zhang, Fei Huang
- Abstract summary: Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
- Score: 73.54562551341454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM) agents significantly extend the capabilities of
standalone LLMs, empowering them to interact with external tools (e.g., APIs,
functions) and complete various tasks in a self-directed fashion. The challenge
of tool use demands that LLMs not only understand user queries and generate
answers accurately but also excel in task planning, tool invocation, and result
summarization. While traditional works focus on training a single LLM with all
these capabilities, performance limitations become apparent, particularly with
smaller models. To overcome these challenges, we propose a novel approach that
decomposes the aforementioned capabilities into a planner, caller, and
summarizer. Each component is implemented by a single LLM that focuses on a
specific capability and collaborates with others to accomplish the task. This
modular framework facilitates individual updates and the potential use of
smaller LLMs for building each capability. To effectively train this framework,
we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM
on the entire dataset without discriminating sub-tasks, providing the model
with a comprehensive understanding of the task. Second, the fine-tuned LLM is
used to instantiate the planner, caller, and summarizer respectively, which are
continually fine-tuned on respective sub-tasks. Evaluation across various
tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses
the traditional single-LLM approach, highlighting its efficacy and advantages
in tool learning.
Related papers
- UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - LLMBind: A Unified Modality-Task Integration Framework [38.95771765322677]
We introduce textbfLLMBind, a novel framework designed to unify a diverse array of multi-modal tasks.
By harnessing a Mixture-of-Experts (MoE) Large Language Model (LLM), LLMBind processes multi-modal inputs and generates task-specific tokens, enabling the invocation of corresponding models to accomplish tasks.
arXiv Detail & Related papers (2024-02-22T12:36:31Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.