Formal Logic Enabled Personalized Federated Learning Through Property
Inference
- URL: http://arxiv.org/abs/2401.07448v2
- Date: Wed, 24 Jan 2024 01:48:00 GMT
- Title: Formal Logic Enabled Personalized Federated Learning Through Property
Inference
- Authors: Ziyan An, Taylor T. Johnson, Meiyi Ma
- Abstract summary: In this work, we propose a new training paradigm that leverages temporal logic reasoning to address this issue.
Our approach involves enhancing the training process by incorporating mechanically generated logic expressions for each FL client.
We evaluate the proposed method on two tasks: a real-world traffic volume prediction task consisting of sensory data from fifteen states and a smart city multi-task prediction utilizing synthetic data.
- Score: 5.873100924187382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in federated learning (FL) have greatly facilitated the
development of decentralized collaborative applications, particularly in the
domain of Artificial Intelligence of Things (AIoT). However, a critical aspect
missing from the current research landscape is the ability to enable
data-driven client models with symbolic reasoning capabilities. Specifically,
the inherent heterogeneity of participating client devices poses a significant
challenge, as each client exhibits unique logic reasoning properties. Failing
to consider these device-specific specifications can result in critical
properties being missed in the client predictions, leading to suboptimal
performance. In this work, we propose a new training paradigm that leverages
temporal logic reasoning to address this issue. Our approach involves enhancing
the training process by incorporating mechanically generated logic expressions
for each FL client. Additionally, we introduce the concept of aggregation
clusters and develop a partitioning algorithm to effectively group clients
based on the alignment of their temporal reasoning properties. We evaluate the
proposed method on two tasks: a real-world traffic volume prediction task
consisting of sensory data from fifteen states and a smart city multi-task
prediction utilizing synthetic data. The evaluation results exhibit clear
improvements, with performance accuracy improved by up to 54% across all
sequential prediction models.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Interpretable Concept-Based Memory Reasoning [12.562474638728194]
Concept-based Memory Reasoner (CMR) is a novel CBM designed to provide a human-understandable and provably-verifiable task prediction process.
CMR achieves better accuracy-interpretability trade-offs to state-of-the-art CBMs, discovers logic rules consistent with ground truths, allows for rule interventions, and allows pre-deployment verification.
arXiv Detail & Related papers (2024-07-22T10:32:48Z) - IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
Federated learning (FL) has emerged as a promising paradigm that enables clients to collaboratively train a shared global model without uploading their local data.
We propose a data quality-aware incentive mechanism to encourage clients' participation.
Our proposed mechanism exhibits highest training accuracy and reduces up to 53.34% of the server's cost with real-world datasets.
arXiv Detail & Related papers (2024-06-12T07:47:22Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.