See the Unseen: Better Context-Consistent Knowledge-Editing by Noises
- URL: http://arxiv.org/abs/2401.07544v2
- Date: Wed, 17 Jan 2024 05:28:18 GMT
- Title: See the Unseen: Better Context-Consistent Knowledge-Editing by Noises
- Authors: Youcheng Huang, Wenqiang Lei, Zheng Zhang, Jiancheng Lv, Shuicheng Yan
- Abstract summary: Knowledge-editing updates knowledge of large language models (LLMs)
Existing works ignore this property and the editing lacks generalization.
We empirically find that the effects of different contexts upon LLMs in recalling the same knowledge follow a Gaussian-like distribution.
- Score: 73.54237379082795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge-editing updates knowledge of large language models (LLMs) and
contributes to the interpretability and application of LLMs. However, knowledge
applying is context-consistent: LLMs can recall the same knowledge in different
contexts. Existing works ignore this property and the editing lacks
generalization. In this paper, we empirically find that the effects of
different contexts upon LLMs in recalling the same knowledge follow a
Gaussian-like distribution. We then sample Gaussian noises to simulate the
effects of different contexts when updating LLMs. By such, we can make LLMs see
the unseen contexts where the edited knowledge will be applied, therefore
improving the editing generalization. Experimental results on three LLMs
demonstrate the effectiveness of our methods and also distinguish our methods
from the others of fine-tuning LLMs by noises.
Related papers
- Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing [21.143790515287392]
Large language models (LLMs) have achieved remarkable performance on various natural language tasks.
They are trained on static corpora and their knowledge can become outdated quickly in the fast-changing world.
This motivates the development of knowledge editing (KE) to update specific knowledge in LLMs without changing unrelated others or compromising their pre-trained capabilities.
arXiv Detail & Related papers (2025-02-02T00:10:51Z) - Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues [3.2162648244439684]
We develop a framework for investigating how effective Large Language Models are at measuring and scoring empathy of responses in dialogues.
Our strategy is to approximate the performance of state-of-the-art and fine-tuned LLMs with explicit and explainable features.
Our results show that when only using embeddings, it is possible to achieve performance close to that of generic LLMs.
arXiv Detail & Related papers (2024-12-28T20:37:57Z) - Distilling Rule-based Knowledge into Large Language Models [90.7765003679106]
We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules.
We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules.
Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.
arXiv Detail & Related papers (2023-11-15T11:42:41Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
It is still unclear whether knowledge editing might introduce side effects that pose potential risks or not.
This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for Large Language Models.
Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences.
arXiv Detail & Related papers (2023-10-03T15:10:46Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLM is a new benchmark for evaluating knowledge editing of large language models.
Experimental results indicate that the current methods for knowledge editing using raw documents are not effective in yielding satisfactory results.
arXiv Detail & Related papers (2023-08-19T09:17:19Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.