Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing
- URL: http://arxiv.org/abs/2502.00602v1
- Date: Sun, 02 Feb 2025 00:10:51 GMT
- Title: Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing
- Authors: Tianci Liu, Zihan Dong, Linjun Zhang, Haoyu Wang, Jing Gao,
- Abstract summary: Large language models (LLMs) have achieved remarkable performance on various natural language tasks.
They are trained on static corpora and their knowledge can become outdated quickly in the fast-changing world.
This motivates the development of knowledge editing (KE) to update specific knowledge in LLMs without changing unrelated others or compromising their pre-trained capabilities.
- Score: 21.143790515287392
- License:
- Abstract: Large language models (LLMs) have achieved remarkable performance on various natural language tasks. However, they are trained on static corpora and their knowledge can become outdated quickly in the fast-changing world. This motivates the development of knowledge editing (KE) to update specific knowledge in LLMs without changing unrelated others or compromising their pre-trained capabilities. Previous efforts sought to update a small amount of parameters of a LLM and proved effective for making selective updates. Nonetheless, the edited LLM often exhibits degraded ability to reason about the new knowledge. In this work, we identify a key issue: heterogeneous token overfitting (HTO), where the LLM overfits different tokens in the provided knowledge at varying rates. To tackle this, we propose OVERTONE, a token-level smoothing method that mitigates HTO by adaptively refining the target distribution. Theoretically, OVERTONE offers better parameter updates with negligible computation overhead. It also induces an implicit DPO but does not require preference data pairs. Extensive experiments across four editing methods, two LLMs, and diverse scenarios demonstrate the effectiveness and versatility of our method.
Related papers
- Time Sensitive Knowledge Editing through Efficient Finetuning [35.79991957163508]
Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains.
Keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete.
Existing locate-and-edit knowledge editing (KE) method suffers from two limitations.
arXiv Detail & Related papers (2024-06-06T20:41:36Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Towards Reliable Latent Knowledge Estimation in LLMs: Zero-Prompt Many-Shot Based Factual Knowledge Extraction [15.534647327246239]
We propose to eliminate prompt engineering when probing large language models (LLMs) for factual knowledge.
Our approach, called Zero-Prompt Latent Knowledge Estimator (ZP-LKE), leverages the in-context learning ability of LLMs.
We perform a large-scale evaluation of the factual knowledge of a variety of open-source LLMs over a large set of relations and facts from the Wikidata knowledge base.
arXiv Detail & Related papers (2024-04-19T15:40:39Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
We propose a Learning to Edit (LTE) framework, focusing on teaching large language models to apply updated knowledge into input questions.
LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits.
We demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds.
arXiv Detail & Related papers (2024-02-19T07:45:17Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
Knowledge-editing updates knowledge of large language models (LLMs)
Existing works ignore this property and the editing lacks generalization.
We empirically find that the effects of different contexts upon LLMs in recalling the same knowledge follow a Gaussian-like distribution.
arXiv Detail & Related papers (2024-01-15T09:09:14Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
It is still unclear whether knowledge editing might introduce side effects that pose potential risks or not.
This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for Large Language Models.
Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences.
arXiv Detail & Related papers (2023-10-03T15:10:46Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
Large language models (LLMs) are prone to hallucinations, generating content that deviates from facts seen during pretraining.
We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs.
We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts.
arXiv Detail & Related papers (2023-09-07T17:45:31Z) - Can LMs Learn New Entities from Descriptions? Challenges in Propagating
Injected Knowledge [72.63368052592004]
We study LMs' abilities to make inferences based on injected facts (or propagate those facts)
We find that existing methods for updating knowledge show little propagation of injected knowledge.
Yet, prepending entity definitions in an LM's context improves performance across all settings.
arXiv Detail & Related papers (2023-05-02T17:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.