MLAD: A Unified Model for Multi-system Log Anomaly Detection
- URL: http://arxiv.org/abs/2401.07655v1
- Date: Mon, 15 Jan 2024 12:51:13 GMT
- Title: MLAD: A Unified Model for Multi-system Log Anomaly Detection
- Authors: Runqiang Zang, Hongcheng Guo, Jian Yang, Jiaheng Liu, Zhoujun Li,
Tieqiao Zheng, Xu Shi, Liangfan Zheng, Bo Zhang
- Abstract summary: We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
- Score: 35.68387377240593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In spite of the rapid advancements in unsupervised log anomaly detection
techniques, the current mainstream models still necessitate specific training
for individual system datasets, resulting in costly procedures and limited
scalability due to dataset size, thereby leading to performance bottlenecks.
Furthermore, numerous models lack cognitive reasoning capabilities, posing
challenges in direct transferability to similar systems for effective anomaly
detection. Additionally, akin to reconstruction networks, these models often
encounter the "identical shortcut" predicament, wherein the majority of system
logs are classified as normal, erroneously predicting normal classes when
confronted with rare anomaly logs due to reconstruction errors.
To address the aforementioned issues, we propose MLAD, a novel anomaly
detection model that incorporates semantic relational reasoning across multiple
systems. Specifically, we employ Sentence-bert to capture the similarities
between log sequences and convert them into highly-dimensional learnable
semantic vectors. Subsequently, we revamp the formulas of the Attention layer
to discern the significance of each keyword in the sequence and model the
overall distribution of the multi-system dataset through appropriate vector
space diffusion. Lastly, we employ a Gaussian mixture model to highlight the
uncertainty of rare words pertaining to the "identical shortcut" problem,
optimizing the vector space of the samples using the maximum expectation model.
Experiments on three real-world datasets demonstrate the superiority of MLAD.
Related papers
- USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models [19.36513465638031]
AnomalyLLM is an in-context learning framework that integrates the information of a few labeled samples to achieve few-shot anomaly detection.
Experiments on four datasets reveal that AnomalyLLM can not only significantly improve the performance of few-shot anomaly detection, but also achieve superior results on new anomalies without any update of model parameters.
arXiv Detail & Related papers (2024-05-13T10:37:50Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems.
We propose a novel scoring network with a score-guided regularization to learn and enlarge the anomaly score disparities between normal and abnormal data.
We next propose a score-guided autoencoder (SG-AE), incorporating the scoring network into an autoencoder framework for anomaly detection.
arXiv Detail & Related papers (2021-09-10T06:14:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.